Inference in Temporal Models

video-placeholder
Loading...
강의 계획표 보기

배우게 될 기술

Inference, Gibbs Sampling, Markov Chain Monte Carlo (MCMC), Belief Propagation

검토

4.6개(473개 평가)

  • 5 stars
    71.03%
  • 4 stars
    21.35%
  • 3 stars
    5.28%
  • 2 stars
    1.05%
  • 1 star
    1.26%

LC

2019년 2월 2일

Very great course! A lot of things have been learnt. The lectures, quiz and assignments clear up all key concepts. Especially, assignments are wonderful!

LL

2017년 3월 11일

Thanks a lot for professor D.K.'s great course for PGM inference part. Really a very good starting point for PGM model and preparation for learning part.

수업에서

Inference in Temporal Models

In this brief lesson, we discuss some of the complexities of applying some of the exact or approximate inference algorithms that we learned earlier in this course to dynamic Bayesian networks.

강사:

  • Placeholder

    Daphne Koller

    Professor

Coursera 카탈로그 살펴보기

무료로 참여해 맞춤화된 추천, 업데이트 및 제안을 받아보세요.