Activity Recognition using Python, Tensorflow and Keras

제공자:
Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Learn about data augmentation.

Learn about transfer learning using training the pre-trained model InceptionNet V3 on the data.

Clock1.5 hours
Beginner초급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

Note: The rhyme platform currently does not support webcams, so this is not a live project. This guided project is about human activity recognition using Python,TensorFlow2 and Keras. Human activity recognition comes under the computer vision domain. In this project you will learn how to customize the InceptionNet model using Tensorflow2 and Keras. While you are watching me code, you will get a cloud desktop with all the required software pre-installed. This will allow you to code along with me. After all, we learn best with active, hands-on learning. Special Feature: 1.Manually label images. 2. Learn how to use data augmentation normalization. 3. Learn about transfer learning using training the pre-trained model InceptionNet V3 on the data. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

  • Deep Learning
  • Python Programming
  • Tensorflow
  • cognitive data science
  • keras

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Learn how to normalize data to improve accuracy of the final results.

  2. Learn how to fine tune the model to improve it's accuracy.

  3. Learn how to apply transfer learning using InceptionNet V3.

  4. Learn how to augment data to prevent overfitting of the model.

  5. Learn how to label data manually as 0 or 1.

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.