Basic Artificial Neural Networks in Python

109개의 평가
Coursera Project Network
5,838명이 이미 등록했습니다.
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Generate a sample dataset using Scikit-Learn.

Implement an activation function and feed-forward propagation in a multi-layer ANN in Python code

Utilize gradient descent to adjust the weights of each layer of our ANN through back-propagation implementation in Python code

Clock2 hours
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this 1-hour long project-based course, you will learn basic principles of how Artificial Neural Networks (ANNs) work, and how this can be implemented in Python. Together, we will explore basic Python implementations of feed-forward propagation, back propagation using gradient descent, sigmoidal activation functions, and epoch training, all in the context of building a basic ANN from scratch. All of this will be done on Ubuntu Linux, but can be accomplished using any Python I.D.E. on any operating system. We will be using the IDLE development environment to write a single script to code our simple ANN. We will avoid using advanced frameworks such as Tensorflow or Pytorch, for educational purposes. Note that the resulting ANN we build will be use-case agnostic and be provided with dummy inputs. Hence, while the ANN we build and train today may appear to be a useless demonstration, it can easily be adapted to any type of use case if given proper, meaningful inputs. I would encourage learners to experiment- How easy is it to add more layers without using frameworks like Tensorflow? What if we add more nodes? What limitations do we come across? The learner is highly encouraged to experiment beyond the scope of the course. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

Deep LearningArtificial Neural NetworkPython ProgrammingPropagationTensorflow

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Generate a dataset using Scikit-Learn

  2. Plot generated sample dataset to a graph using pyplot

  3. For each layer, multiply inputs by randomly generated weights

  4. For each layer, calculate the dot products of our two-dimensional sample features

  5. Write a sigmoidal activation function in Python and pass the dot product of our features through it before passing as input to the next layer to accomplish feed-forward propagation

  6. Write a cost function in Python based on the Mean Squared Error method

  7. Utilize gradient descent to adjust the weights of each layer of our ANN through back-propagation implementation in Python code

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.



모든 리뷰 보기

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.