Building Recommendation System Using MXNET on AWS Sagemaker

제공자:
Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Learn how to train a Recommendation System using Matrix Factorization using AWS Sagemaker.

Deploy it in production on the cloud using AWS Sagemaker.

Clock2 to 3 hours
Advanced고등
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

Please note: You will need an AWS account to complete this course. Your AWS account will be charged as per your usage. Please make sure that you are able to access Sagemaker within your AWS account. If your AWS account is new, you may need to ask AWS support for access to certain resources. You should be familiar with python programming, and AWS before starting this hands on project. We use a Sagemaker P type instance in this project for training the model, and if you don't have access to this instance type, please contact AWS support and request access. In this 2-hour long project-based course, you will how to train and deploy a Recommendation System using AWS Sagemaker. We will go through the detailed step by step process of training a recommendation system on the Amazon's Electronics dataset. We will be using a Notebook Instance to build our training model. You will learn how to use Apache's MXNET Deep Learning Model on the AWS Sagemaker platform. Since this is a practical, project-based course, we will not dive in the theory behind recommendation systems, but will focus purely on training and deploying a model with AWS Sagemaker. You will also need to have some experience with Amazon Web Services (AWS) and knowledge of how deep learning frameworks work. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

  • Deep Learning
  • aws
  • sagemaker
  • Python Programming
  • Recommender Systems

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Introduction

  2. Create a AWS Sagemaker Notebook Instance.

  3. Download the data.

  4. Explore and Visualize the data.

  5. Prepare the data.

  6. Building the Network.

  7. Creating the Training Function.

  8. Creating the Deployment Functions.

  9. Training and Deploying the Model.

  10. Evaluating the Model.

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.