Climate Change Forecasting Using Deep Learning

제공자:
Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Understand the theory and intuition behind Recurrent Neural Networks and LSTM

Build and train the LSTM based time series model

Assess Trained model performance

Clock1 hour
Intermediate중급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this hands-on project, we will analyze the change in temperatures across globe from the 17th century till now and build a multivariate deep learning based time series model to forecast the U.S. Average temperature. Predictive models attempt at forecasting future value based on historical data.

개발할 기술

  • Deep Learning
  • Artificial Intelligence (AI)
  • visualization
  • Machine Learning
  • Time Series Modelling

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Understand the Problem Statement and Business Case

  2. Import libraries and datasets

  3. Perform exploratory data analysis

  4. Perform data cleaning

  5. Perform Data Visualization

  6. Prepare the data before model training (Global Data)

  7. Understand the intuition behind LSTM Networks

  8. Build and train LSTM model for predicting global temperature trend (Global Data)

  9. Assess model performance (Global Data)

  10. Prepare the data before model training (U.S. Data)

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.