Computer Vision - Object Tracking with OpenCV and Python

4.0
별점
317개의 평가
제공자:
Coursera Project Network
11,820명이 이미 등록했습니다.
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

How Optical and Dense Optical Flow works

How MeanShift and CamShift work

How to do a Single and a Multi-Object Tracking

Clock2 hours
Intermediate중급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this 1-hour long project-based course, you will learn how to do Computer Vision Object Tracking from Videos. At the end of the project, you'll have learned how Optical and Dense Optical Flow work, how to use MeanShift and CamShist and how to do a Single and a Multi-Object Tracking. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your Internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with (e.g. Python, Jupyter, and Tensorflow) pre-installed. Prerequisites: In order to be successful in this project, you should have a fundamental knowledge of Python and OpenCV. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

OpencvPython ProgrammingJupyter Notebook

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

    안내형 프로젝트 진행 방식

    작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

    분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

    검토

    COMPUTER VISION - OBJECT TRACKING WITH OPENCV AND PYTHON의 최상위 리뷰

    모든 리뷰 보기

    자주 묻는 질문

    자주 묻는 질문

    궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.