COVID19 Data Analysis Using Python

4.6
별점
1,384개의 평가
제공자:
Coursera Project Network
17,242명이 이미 등록했습니다.
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Learn the steps, needed to be taken to prepare your data sources for an analysis

Learn how to look at your data to find a good measure to stablish your analysis based upon

Learn to visualize the result of your analysis

Clock100 Minutes
Intermediate중급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this project, you will learn how to preprocess and merge datasets to calculate needed measures and prepare them for an Analysis. In this project, we are going to work with the COVID19 dataset, published by John Hopkins University, which consists of the data related to the cumulative number of confirmed cases, per day, in each Country. Also, we have another dataset consist of various life factors, scored by the people living in each country around the globe. We are going to merge these two datasets to see if there is any relationship between the spread of the virus in a country and how happy people are, living in that country. Notes: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

Python ProgrammingData AnalysisPandasSeabornStatistics

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Importing COVID19 dataset and preparing it for the analysis by dropping columns and aggregating rows.

  2. Deciding on and calculating a good measure for our analysis.

  3. Merging two datasets and finding correlations among our data.

  4. Visualizing our analysis results using Seaborn.

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

검토

COVID19 DATA ANALYSIS USING PYTHON의 최상위 리뷰

모든 리뷰 보기

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.