Introduction to Customer Segmentation in Python

4.6
별점
13개의 평가
제공자:
Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Dimensionality Reduction using standard PCA and variants

Create interactive plots

Clustering data using K-Means with evaluation metrics

Clock2 hours
Beginner초급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this 2 hour long project, you will learn how to approach a customer purchase dataset, and how to explore the intricacies of such a dataset. You will learn the basic underlying ideas behind Principal Component Analysis, Kernel Principal Component Analysis, and K-Means Clustering. You will learn how to leverage these concepts, paired with industry knowledge and auxiliary modeling concepts to segment the customers of a certain store, and find similarities and differences between different clusters using unsupervised machine learning techniques. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

  • Dimensionality Reduction
  • Market Segmentation
  • Machine Learning
  • clustering

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Introduction to the task and demo

  2. Exploratory Data Analysis

  3. Principal Component Analysis

  4. Kernel Principal Component Analysis

  5. K-Means Clustering

  6. Interactive Cluster Analysis

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.