Deep Learning with PyTorch : Neural Style Transfer

4.3
별점
50개의 평가
제공자:
Coursera Project Network
2,892명이 이미 등록했습니다.
학습자는 이 무료 안내 프로젝트에서 다음을 수행하게 됩니다.

Understand Neural Style Transfer Practically

Be able to create artistic style image by applying style transfer using pytorch

인터뷰에서 이 안내형 체험 보여주기

Clock2 Hours
Intermediate중급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this 2 hour-long project-based course, you will learn to implement neural style transfer using PyTorch. Neural Style Transfer is an optimization technique used to take a content and a style image and blend them together so the output image looks like the content image but painted in the style of the style image. We will create artistic style image using content and given style image. We will compute the content and style loss function. We will minimize this loss function using optimization techniques to get an artistic style image that retains content features and style features. This guided project is for learners who want to apply neural style transfer practically using PyTorch. In order to be successful in this guided project, you should be familiar with the theoretical concept of neural style transfer, python programming, and convolutional neural networks.A google account is needed to use the Google colab environment.

개발할 기술

  • Convolutional Neural Network
  • Deep Learning
  • pytorch
  • Neural Style Transfer

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Set google colab runtime

  2. Loading VGG-19 pretrained model

  3. Preprocess Image

  4. Deprocess Image

  5. Create content and style loss

  6. Get content,style features and create gram matrix

  7. Training loop

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

검토

DEEP LEARNING WITH PYTORCH : NEURAL STYLE TRANSFER의 최상위 리뷰

모든 리뷰 보기

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.