Project: Understanding Deepfakes with Keras

제공자:
Rhyme
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Implement a Deep Convolutional Generative Adversarial Network (DCGAN).

Train a DCGAN to synthesize realistic looking images.

Clock2 hours
Advanced고등
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this 2-hour long project-based course, you will learn to implement DCGAN or Deep Convolutional Generative Adversarial Network, and you will train the network to generate realistic looking synthesized images. The term Deepfake is typically associated with synthetic data generated by Neural Networks which is similar to real-world, observed data - often with synthesized images, videos or audio. Through this hands-on project, we will go through the details of how such a network is structured, trained, and will ultimately generate synthetic images similar to hand-written digit 0 from the MNIST dataset. Since this is a practical, project-based course, you will need to have a theoretical understanding of Neural Networks, Convolutional Neural Networks, and optimization algorithms like Gradient Descent. We will focus on the practical aspect of implementing and training DCGAN, but not too much on the theoretical aspect. You will also need some prior experience with Python programming. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Tensorflow pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

Deep LearningdeepfakesGANMachine Learningkeras

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Introduction

  2. Importing and Plotting the Data

  3. Discriminator

  4. Generator

  5. Generative Adversarial Network

  6. Training the GAN

  7. Final Results

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 가상 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

  • 안내 프로젝트를 구매하면, 시작에 필요한 파일과 소프트웨어가 포함된 클라우드 데스크톱 작업 영역에 웹 브라우저를 통해 접근할 수 있으며, 주제 전문가의 단계별 동영상 지침 등 프로젝트 완료에 필요한 모든 것이 제공됩니다.

  • 귀하의 작업 영역에는 노트북이나 데스크톱 컴퓨터에 맞게 용량이 지정된 클라우드 데스크톱이 포함되어 있으므로 모바일 기기에서는 안내 프로젝트를 이용할 수 없습니다.

  • 안내 프로젝트 강사는 해당 주제의 전문가로서, 해당 프로젝트 영역이나 도구, 기술에 대한 경험이 풍부하며 전 세계 수백만 명의 학습자와 지식을 적극적으로 공유합니다.

  • 안내 프로젝트에서 생성된 파일은 모두 다운로드하고 보관할 수 있습니다. 클라우드 데스크톱에 접속한 상태에서 '파일 브라우저'를 사용하여 파일을 다운로드할 수 있습니다.

  • 안내 프로젝트에는 재정 지원이 제공되지 않습니다.

  • 안내 프로젝트의 청강은 할 수 없습니다.

  • 페이지 상단에서 이 안내 프로젝트에 대한 경험 수준을 누르면 우선적으로 알아야 하는 지식을 확인할 수 있습니다. 안내 프로젝트의 단계마다 강사가 차례대로 안내해 드립니다.

  • 네, 브라우저를 통해 이용할 수 있는 클라우드 데스크톱에서 안내 프로젝트 완료에 필요한 모든 것을 이용할 수 있습니다.

  • 브라우저의 분할 화면 환경에서 바로 작업을 완료하여 학습할 수 있습니다. 화면 왼쪽에 있는 작업 영역에서 작업을 완료할 수 있습니다. 화면 오른쪽에서는 강사의 단계별 프로젝트 안내를 볼 수 있습니다.