Deploy Machine Learning Model into AWS Cloud Servers

4.3
별점
29개의 평가
제공자:
Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Build a machine learning-based spam detector API

Deploy the machine learning application into AWS virtual servers.

Clock2 hours
Intermediate중급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

By the end of this project, you will learn how to build a spam detector using machine learning & launch it as a serverless API using AWS Elastic Beanstalk technology. You will be using the Flask python framework to create the API, basic machine learning methods to build the spam detector & AWS desktop management console to deploy the spam detector into the AWS cloud servers. Additionally, you will learn more about how to switch between different versions of your web application & also, monitoring your AWS servers using Elastic Beanstalk Desktop Management Console. Note: To avoid distraction for set up during the course, we would recommend that you create an Amazon AWS account beforehand. Amazon AWS provides a free tier option for 1 year & the course materials will utilize services that fall under the free tier option.

개발할 기술

  • aws
  • EC2
  • Aws Elastic Beanstalk
  • Machine Learning
  • Python Programming

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Create a Flask application

  2. Create a RESTful API - GET/POST Method

  3. Build a spam detector ML model

  4. Build a spam detector API

  5. Launch an AWS EC2 instance(Virtual Server) using AWS Elastic Beanstalk.

  6. Deploy your ML model(API) into AWS virtual servers.

  7. Perform additional AWS Elastic Beanstalk actions: Application versioning, Server logs, Server performance monitoring & Terminate the server.

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.