Detect Fake News in Python with Tensorflow

제공자:
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Collect and prepare text-based training and validation data for classifying text

Perform term frequency–inverse document frequency vectorization on text samples to determine similarity between texts for classification

Train a Deep Neural Network to classify Fake News articles

2 hours
중급
다운로드 필요 없음
분할 화면 동영상
영어
데스크톱 전용

"Fake News" is a word used to mean different things to different people. At its heart, we define "fake news" as any news stories which are false: the article itself is fabricated without verifiable evidence, citations or quotations. Often these stories may be lies and propaganda that is deliberately intended to confuse the viewer, or may be characterized as "click-bait" written for monetary incentives (the writer profits on the number of people who click on the story). In recent years, fake news stories have proliferated via social media, partially because they are so readily and widely spread online. Worse yet, Artificial Intelligence and natural language processing, or NLP, technology is ushering in an era of artificially-generated fake news. Both types of fake news are detectable with the use of NLP and deep learning. In this project, you will learn multiple computational methods of identifying and classifying Fake News. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

  • Tensorflow

  • Python Programming

  • Natural Language Processing

  • Fake News Detection

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Introduction to Fake News and it's Effects on Society

  2. Collecting and Preparing Data for Text Classification

  3. Comparing Text with TF-IDF Vectorization

  4. Source Checking and Claim Matching

  5. Deep Learning Detection with Tensorflow

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

안내 프로젝트를 구매하면, 시작에 필요한 파일과 소프트웨어가 포함된 클라우드 데스크톱 작업 영역에 웹 브라우저를 통해 접근할 수 있으며, 주제 전문가의 단계별 동영상 지침 등 프로젝트 완료에 필요한 모든 것이 제공됩니다.

귀하의 작업 영역에는 노트북이나 데스크톱 컴퓨터에 맞게 용량이 지정된 클라우드 데스크톱이 포함되어 있으므로 모바일 기기에서는 안내 프로젝트를 이용할 수 없습니다.

안내 프로젝트 강사는 해당 주제의 전문가로서, 해당 프로젝트 영역이나 도구, 기술에 대한 경험이 풍부하며 전 세계 수백만 명의 학습자와 지식을 적극적으로 공유합니다.

안내 프로젝트에서 생성된 파일은 모두 다운로드하고 보관할 수 있습니다. 클라우드 데스크톱에 접속한 상태에서 '파일 브라우저'를 사용하여 파일을 다운로드할 수 있습니다.

안내 프로젝트는 환불이 불가능합니다. 전체 환불 정책 보기

안내 프로젝트에는 재정 지원이 제공되지 않습니다.

안내 프로젝트의 청강은 할 수 없습니다.

페이지 상단에서 이 안내 프로젝트에 대한 경험 수준을 누르면 우선적으로 알아야 하는 지식을 확인할 수 있습니다. 안내 프로젝트의 단계마다 강사가 차례대로 안내해 드립니다.

네, 브라우저를 통해 이용할 수 있는 클라우드 데스크톱에서 안내 프로젝트 완료에 필요한 모든 것을 이용할 수 있습니다.

브라우저의 분할 화면 환경에서 바로 작업을 완료하여 학습할 수 있습니다. 화면 왼쪽에 있는 작업 영역에서 작업을 완료할 수 있습니다. 화면 오른쪽에서는 강사의 단계별 프로젝트 안내를 볼 수 있습니다.