Perform Feature Analysis with Yellowbrick

4.8
별점

55개의 평가

제공자:

2,599명이 이미 등록했습니다.

학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.
2 hours
중급
다운로드 필요 없음
분할 화면 동영상
영어
데스크톱 전용

Welcome to this project-based course on Performing Feature Analysis with Yellowbrick. In this course, we are going to use visualizations to steer machine learning workflows. The problem we will tackle is to predict whether rooms in apartments are occupied or unoccupied based on passive sensor data such as temperature, humidity, light and CO2 levels. With an emphasis on visual steering of our analysis, we will cover the following topics in our machine learning workflow: feature analysis using methods such as scatter plots, RadViz, parallel coordinates plots, feature ranking, and manifold visualization. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, Yellowbrick, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

  • Data Science

  • Machine Learning

  • Python Programming

  • Data Visualization (DataViz)

  • Scikit-Learn

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문