Image Segmentation with Python and Unsupervised Learning

Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Display an image in a viewable frame, and in RGB space.

Use K-means to partition the pixels into relevant colour clusters and segment an image.

Find the best K value according to an objective criterion.

Clock1 hour
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this one hour long project-based course, you will tackle a real-world problem in computer vision called segmentation. Segmentation means taking an image and partitioning it into different regions that capture the different elements of interest in the scene. We will tackle this problem using an unsupervised learning technique called K-means. By the end of this project, you will have segmented an image with unsupervised learning, using code you will write in Python.

개발할 기술

  • Machine Learning
  • Unsupervised Learning
  • Matplotlib
  • Numpy
  • Computer Vision

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Load an image from file

  2. Display an image in frame and RGB space

  3. Find colour clusters using K-means

  4. Display colour clusters and segmented image

  5. Optimize K

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.