Effectively Dealing with Imbalance Classes

제공자:
Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Import dataset and perform EDA & visualizations

Become familiar with the variety of under sampling techniques, their advantages & dis-advantages and implement them.

Clock2 Hours
Intermediate중급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this 2 hour guided project you will learn how to deal with imbalance classification problems in a profound manner, applying several resampling strategies and visualizing the effects of resampling on imbalance classification dataset. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

  • ADASYN
  • SMOTETomek
  • SMOTE
  • Machine Learning
  • Data Visualization (DataViz)

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Task 1: Importing data, Exploratory data analysis & visualizations

  2. Task 2: Applying under sampling strategies: Random & TomekLinks

  3. Task 3: Applying over sampling strategies: SMOTE & SVMSMOTE

  4. Task 4: Combining Over & Under Sampling strategies: SMOTETomek

  5. Task 5: Metrics Discussion & Comparison of impact of all the strategies

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.