Imbalanced-learn: modelos de ML con datos desequilibrados

제공자:
Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Aprender que son los datos desbalanceados

Aplicar técnicas de under-sampling y over-sampling

Conocer las técnicas para tratar con datos desbalanceados

Clock2 horas
Beginner초급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots스페인어
Laptop데스크톱 전용

Este proyecto es un curso práctico y efectivo para aprender que es el desbalanceo de clases en Machine leraning y como tratarlo. Aprenderemos las técnicas más avanzadas para trabajar con datos desbalanceados como: bSMOTE, ADASYN, SMOTEEN, etc. También aprenderemos a generar modelos capaces de trabajar con datos desbalanceados. Una gran parte de los problemas de clasificación utilizan datos debalanceadas. Si no se tratan estos casos estaremos generando modelos que no estén funcionando correctamente, pese a que a priori parezca que si. Por eso, en este curso aprenderemos a como tratar este tipo de datos.

개발할 기술

  • ADASYN
  • SMOTE
  • Machine Learning
  • Python Programming
  • Imbalanced-learn

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Introducción al desbalanceo de clases

  2. Aplicando técnicas para trabajar con datos desbalanceados

  3. Balanceo aleatorio

  4. Under-sampling

  5. Over-sampling

  6. Over-sampling seguido de under-sampling

  7. Modelos para datos desbalanceados

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.