Linear Regression with Python

4.6
별점
398개의 평가
제공자:
Coursera Project Network
9,666명이 이미 등록했습니다.
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Create a linear model, and implement gradient descent.

Train the linear model to fit given data using gradient descent.

Clock2 hours
Intermediate중급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this 2-hour long project-based course, you will learn how to implement Linear Regression using Python and Numpy. Linear Regression is an important, fundamental concept if you want break into Machine Learning and Deep Learning. Even though popular machine learning frameworks have implementations of linear regression available, it's still a great idea to learn to implement it on your own to understand the mechanics of optimization algorithm, and the training process. Since this is a practical, project-based course, you will need to have a theoretical understanding of linear regression, and gradient descent. We will focus on the practical aspect of implementing linear regression with gradient descent, but not on the theoretical aspect. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

Data ScienceDeep LearningMachine LearningPython ProgrammingLinear Regression

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Introduction

  2. Dataset

  3. Initialize Parameters

  4. Forward Pass

  5. Compute Loss

  6. Backward Pass

  7. Update Parameters

  8. Training Loop

  9. Predictions

  10. Additional Example

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

검토

LINEAR REGRESSION WITH PYTHON의 최상위 리뷰

모든 리뷰 보기

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.