Logistic Regression for Classification using Julia

제공자:
Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Balance data suing the SMOTE method.

Build a logistic regression model.

Clock1 hour 30 minutes
Beginner초급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

This guided project is about book genre classification using logistic regression in Julia. It is ideal for beginners who do not know what logistic regression is because this project explains these concepts in simple terms. While you are watching me code, you will get a cloud desktop with all the required software pre-installed. This will allow you to code along with me. After all, we learn best with active, hands-on learning. Special features: 1) Simple explanations of important concepts. 2) Use of images to aid in explanation. 3) Use a real world dataset. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

  • Data Science
  • Machine Learning
  • Logistic Regression
  • data preperation
  • julia

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Exploratory data analysis

  2. One-hot encoding

  3. Check if data is balanced

  4. Build a logistic regression model

  5. Check model accuracy

  6. Check ROC numbers to determine number of false positives and false negatives.

  7. Using SMOTE to correct the imbalanced data

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.