Introdução a Machine Learning em uma Competição do Kaggle

제공자:
Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Como se familiarizar com conceitos básicos de Machine Learning criando um modelo de predição.

Construa, treine, teste avalia a performance de alguns modelos. 

Realize a submissão da sua primeira solução da competição no Kaggle.

Clock2 horas
Beginner초급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots포르투갈어 (브라질)
Laptop데스크톱 전용

Neste curso de 1 hora, com base em projeto, você será capaz de entender como prever quais passageiros sobreviveriam ao naufrágio do Titanic e fazer sua primeira submissão em uma competição de Aprendizado de Máquina dentro da plataforma do Kaggle. Além disso, você, como iniciante em Machine Learning, irá se familiarizar e entender como iniciar um modelo preditivo usando conceitos básicos de aprendizado supervisionado. Vamos escolher classificadores para aprender, prever e testar os dados. Realizaremos uma Análise Exploratória de Dados (também chamada de EDA) para adquirir um bom entendimento sobre os dados que iremos trabalhar. Ao final, você saberá como medir o desempenho de um modelo, e será capaz de enviar seu modelo para a competição e obter uma pontuação do Kaggle. Nota: Este curso funciona melhor para aprendizes de regiões que tem como idioma o Português. Você encontra a versão desse mesmo conteúdo disponível em inglês para aprendizes da América do Norte em: https://www.coursera.org/projects/ml-basics-kaggle-competition Este projeto é indicado para iniciantes em Ciência de Dados que desejam fazer uma aplicação prática usando Aprendizado de Máquina e análise de dados. Para ter sucesso neste projeto é desejado que você tenha conhecimentos básicos em linguagem Python, utilizaremos bibliotecas como Numpy e Pandas. Você também deve previamente ter uma conta Google para utilizar o Google Colab e também uma conta na plataforma Kaggle (ambas sem custo).

개발할 기술

  • Aprendizagem de Máquina
  • Machine Learning
  • Python Programming
  • Ciência de Dados
  • Kaggle

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Introdução ao Kaggle

  2. Análise Exploratória dos Dados (EDA)

  3. Pré processamento I - Analisando Dados Faltantes

  4. Pré-processamento II - Analisando Dados Faltantes

  5. Pré-processamento III - Codificando Dados Categóricos

  6. Dividindo o conjunto de dados em treinamento e teste

  7. Construindo nossos modelos de aprendizado de máquina

  8. Realize a submissão do seu projeto no Kaggle

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.