Creating Multi Task Models With Keras

4.6
별점
40개의 평가
제공자:
1,708명이 이미 등록했습니다.
학습자는 이 무료 안내 프로젝트에서 다음을 수행하게 됩니다.

Creating multi-task models with Keras

Training multi-task models with Keras

인터뷰에서 이 안내형 체험 보여주기

2 hours
중급
다운로드 필요 없음
분할 화면 동영상
영어
데스크톱 전용

In this 1 hour long guided project, you will learn to create and train multi-task, multi-output models with Keras. You will learn to use Keras' functional API to create a multi output model which will be trained to learn two different labels given the same input example. The model will have one input but two outputs. A few of the shallow layers will be shared between the two outputs, you will also use a ResNet style skip connection in the model. If you are familiar with Keras, you have probably come across examples of models that are trained to perform multiple tasks. For example, an object detection model where a CNN is trained to find all class instances in the input images as well as give a regression output to localize the detected class instances in the input. Being able to use Keras' functional API is a first step towards building complex, multi-output models like object detection models. We will be using TensorFlow as our machine learning framework. The project uses the Google Colab environment. You will need prior programming experience in Python. You will also need prior experience with Keras. Consider this to be an intermediate level Keras project. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, Convolutional Neural Networks, and optimization algorithms like gradient descent but want to understand how to use use Keras to write custom, more complex models than just plain sequential neural networks. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

요구 사항

Prior programming experience in Python. Conceptual understanding of Neural Networks. Prior experience with TensorFlow and Keras is recommended.

개발할 기술

  • Deep Learning

  • Machine Learning

  • Tensorflow

  • Computer Vision

  • keras

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Introduction

  2. Create Dataset

  3. Dataset Generator

  4. Create Model

  5. Train the Model

  6. Final Predictions

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

검토

CREATING MULTI TASK MODELS WITH KERAS의 최상위 리뷰

모든 리뷰 보기

자주 묻는 질문

귀하의 작업 영역에는 노트북이나 데스크톱 컴퓨터에 맞게 용량이 지정된 클라우드 데스크톱이 포함되어 있으므로 모바일 기기에서는 안내 프로젝트를 이용할 수 없습니다.

안내 프로젝트 강사는 해당 주제의 전문가로서, 해당 프로젝트 영역이나 도구, 기술에 대한 경험이 풍부하며 전 세계 수백만 명의 학습자와 지식을 적극적으로 공유합니다.

안내 프로젝트에서 생성된 파일은 모두 다운로드하고 보관할 수 있습니다. 클라우드 데스크톱에 접속한 상태에서 '파일 브라우저'를 사용하여 파일을 다운로드할 수 있습니다.

페이지 상단에서 이 안내 프로젝트에 대한 경험 수준을 누르면 우선적으로 알아야 하는 지식을 확인할 수 있습니다. 안내 프로젝트의 단계마다 강사가 차례대로 안내해 드립니다.

네, 브라우저를 통해 이용할 수 있는 클라우드 데스크톱에서 안내 프로젝트 완료에 필요한 모든 것을 이용할 수 있습니다.

브라우저의 분할 화면 환경에서 바로 작업을 완료하여 학습할 수 있습니다. 화면 왼쪽에 있는 작업 영역에서 작업을 완료할 수 있습니다. 화면 오른쪽에서는 강사의 단계별 프로젝트 안내를 볼 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.