Fake News Detection with Machine Learning

4.6
별점
56개의 평가
제공자:
Coursera Project Network
2,816명이 이미 등록했습니다.
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Create a pipeline to remove stop-words ,perform tokenization and padding.

Understand the theory and intuition behind Recurrent Neural Networks and LSTM

Train the deep learning model and assess its performance

Clock2 hours
Beginner초급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this hands-on project, we will train a Bidirectional Neural Network and LSTM based deep learning model to detect fake news from a given news corpus. This project could be practically used by any media company to automatically predict whether the circulating news is fake or not. The process could be done automatically without having humans manually review thousands of news related articles. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

Python ProgrammingMachine LearningNatural Language ProcessingArtificial Intelligence(AI)

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Understand the Problem Statement and business case 

  2. Import libraries and datasets

  3. Perform Exploratory Data Analysis

  4. Perform Data Cleaning

  5. Visualize the cleaned data

  6. Prepare the data by tokenizing and padding

  7. Understand the theory and intuition behind Recurrent Neural Networks

  8. Understand the theory and intuition behind LSTM

  9. Build and train the model

  10. Assess trained model performance

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

검토

FAKE NEWS DETECTION WITH MACHINE LEARNING의 최상위 리뷰

모든 리뷰 보기

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.