Predicting Salaries with Decision Trees

제공자:
Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Create a machine learning model using industry standard tools and use it to make salary predictions.

Clock1.5 hours
Intermediate중급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this 1.5 hour long project-based course, you will tackle a real-world prediction problem using machine learning. The dataset we are going to use comes from the U.S. Census Bureau; they recorded a number of attributes such as gender and occupation as well as the salary range for a sample of more than 32,000 Americans. We will fit a decision tree to this data, and try to predict the salary for a person we haven’t seen before. By the end of this project, you will have created a machine learning model using industry standard tools, including Python and sklearn. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

  • Python Programming
  • Machine Learning
  • sklearn

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Load a dataset from file

  2. Process a dataset so that it can be modelled

  3. Split a dataset into training and testing sets

  4. Fit a decision tree to a dataset and make predictions

  5. Prune a decision tree to improve its accuracy

  6. Generate a graphical representation of a decision tree

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.