Diabetic Retinopathy Detection with Artificial Intelligence

6개의 평가
Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Understand the theory and intuition behind Deep Neural Networks, Residual Nets, and Convolutional Neural Networks (CNNs)

Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend

Assess the performance of trained CNN and ensure its generalization using various Key performance indicators.

Clock2 hours
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this project, we will train deep neural network model based on Convolutional Neural Networks (CNNs) and Residual Blocks to detect the type of Diabetic Retinopathy from images. Diabetic Retinopathy is the leading cause of blindness in the working-age population of the developed world and estimated to affect over 347 million people worldwide. Diabetic Retinopathy is disease that results from complication of type 1 & 2 diabetes and can develop if blood sugar levels are left uncontrolled for a prolonged period of time. With the power of Artificial Intelligence and Deep Learning, doctors will be able to detect blindness before it occurs.

개발할 기술

Deep LearningMachine LearningPython ProgrammingArtificial Intelligence(AI)Computer Vision

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Understand the Problem Statement and Business Case

  2. Import Libraries and Datasets

  3. Perform Data Exploration and Visualization

  4. Perform Data Augmentation and Create Data Generator

  5. Understand the Theory and Intuition Behind Convolutional Neural Networks

  6. Build a ResNet Deep Neural Network Model

  7. Compile and Train the Deep Neural Network Model 

  8. Assess the Performance of the Trained Model

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.