Using TensorFlow with Amazon Sagemaker

4.6
별점
28개의 평가
제공자:
Coursera Project Network
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Prepare custom script for Sagemaker.

Train a TensorFlow model using Sagemaker.

Deploy a TensorFlow trained model using Sagemaker.

Clock2 hours
Advanced고등
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

Please note: You will need an AWS account to complete this course. Your AWS account will be charged as per your usage. Please make sure that you are able to access Sagemaker within your AWS account. If your AWS account is new, you may need to ask AWS support for access to certain resources. You should be familiar with python programming, and AWS before starting this hands on project. In this 2-hour long project-based course, you will learn how to train and deploy an image classifier created and trained with the TensorFlow framework within the Amazon Sagemaker ecosystem. Sagemaker provides a number of machine learning algorithms ready to be used for solving a number of tasks. However, it is possible to use Sagemaker for custom training scripts as well. We will use TensorFlow and Sagemaker's TensorFlow Estimator to create, train and deploy a model that will be able to classify images of dogs and cats from the popular Oxford IIIT Pet Dataset. Since this is a practical, project-based course, we will not dive in the theory behind deep learning based image classification, but will focus purely on training and deploying a model with Sagemaker and TensorFlow. You will also need to have some experience with Amazon Web Services (AWS). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

Deep Learningimage classificationMachine LearningsagemakerTensorflow

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Download the data

  2. Prepare the dataset

  3. Create the model

  4. Data generators

  5. Arguments

  6. Finalizing the training script

  7. Upload Dataset to S3

  8. TensorFlow Estimator

  9. Deploy the model

  10. Inference and Deleting Endpoint 

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

  • 안내 프로젝트를 구매하면, 시작에 필요한 파일과 소프트웨어가 포함된 클라우드 데스크톱 작업 영역에 웹 브라우저를 통해 접근할 수 있으며, 주제 전문가의 단계별 동영상 지침 등 프로젝트 완료에 필요한 모든 것이 제공됩니다.

  • 귀하의 작업 영역에는 노트북이나 데스크톱 컴퓨터에 맞게 용량이 지정된 클라우드 데스크톱이 포함되어 있으므로 모바일 기기에서는 안내 프로젝트를 이용할 수 없습니다.

  • 안내 프로젝트 강사는 해당 주제의 전문가로서, 해당 프로젝트 영역이나 도구, 기술에 대한 경험이 풍부하며 전 세계 수백만 명의 학습자와 지식을 적극적으로 공유합니다.

  • 안내 프로젝트에서 생성된 파일은 모두 다운로드하고 보관할 수 있습니다. 클라우드 데스크톱에 접속한 상태에서 '파일 브라우저'를 사용하여 파일을 다운로드할 수 있습니다.

  • 안내 프로젝트는 환불이 불가능합니다. 전체 환불 정책 보기

  • 안내 프로젝트에는 재정 지원이 제공되지 않습니다.

  • 안내 프로젝트의 청강은 할 수 없습니다.

  • 페이지 상단에서 이 안내 프로젝트에 대한 경험 수준을 누르면 우선적으로 알아야 하는 지식을 확인할 수 있습니다. 안내 프로젝트의 단계마다 강사가 차례대로 안내해 드립니다.

  • 네, 브라우저를 통해 이용할 수 있는 클라우드 데스크톱에서 안내 프로젝트 완료에 필요한 모든 것을 이용할 수 있습니다.

  • 브라우저의 분할 화면 환경에서 바로 작업을 완료하여 학습할 수 있습니다. 화면 왼쪽에 있는 작업 영역에서 작업을 완료할 수 있습니다. 화면 오른쪽에서는 강사의 단계별 프로젝트 안내를 볼 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.