Chevron Left
Image Compression with K-Means Clustering (으)로 돌아가기

Coursera Project Network의 Image Compression with K-Means Clustering 학습자 리뷰 및 피드백

4.6
별점
276개의 평가
46개의 리뷰

강좌 소개

In this project, you will apply the k-means clustering unsupervised learning algorithm using scikit-learn and Python to build an image compression application with interactive controls. By the end of this 45-minute long project, you will be competent in pre-processing high-resolution image data for k-means clustering, conducting basic exploratory data analysis (EDA) and data visualization, applying a computationally time-efficient implementation of the k-means algorithm, Mini-Batch K-Means, to compress images, and leverage the Jupyter widgets library to build interactive GUI components to select images from a drop-down list and pick values of k using a slider. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

최상위 리뷰

RD
2020년 6월 28일

The course was very interactive and suitable for beginners. The concepts are explained well and are easy to understand and implement yourself.

HM
2020년 3월 29일

really informative and interactive, rhyme is an ingeniously made learning platform. had a great time learning a new skill.

필터링 기준:

Image Compression with K-Means Clustering 의 46개 리뷰 중 1~25

교육 기관: Ashok G

2020년 4월 17일

useful

교육 기관: Dhananjay J

2020년 9월 21일

A very simple and smooth learning experience. The guided project really helped me connect with the topic and the code being used. I had a slight fear of coding machine learning projects but this course held my hand and helped me understand and finish a project in a very short span of time

교육 기관: Raj D

2020년 6월 29일

The course was very interactive and suitable for beginners. The concepts are explained well and are easy to understand and implement yourself.

교육 기관: Harsh m

2020년 3월 29일

really informative and interactive, rhyme is an ingeniously made learning platform. had a great time learning a new skill.

교육 기관: Vishnu N

2020년 10월 25일

I found this a very good Guided project with Image Compression with K-Means Clustering

교육 기관: Mayank S

2020년 4월 26일

Great Course.

Now i know we can compress image using Kmeans.

Thankyou Snehan Kekre

교육 기관: TEJENDER S

2020년 4월 12일

It was great learning here a good experience. Thank you coursera

교육 기관: Mir T

2020년 6월 13일

An amazing tutor, and a course that anyone can take.

교육 기관: SHUBHAM S

2020년 5월 14일

Amazing high level guide with implementation.....

교육 기관: Satish k J

2020년 6월 6일

Great mage Compression with K-Means Clustering

교육 기관: Abhishek D

2020년 6월 28일

The project done is really good for beginners.

교육 기관: Chandrasekhara S V

2020년 8월 1일

Nice course and is taught extremely well.

교육 기관: Anvay R A

2020년 6월 1일

Great hands on experience !!!

교육 기관: Chandra J

2020년 5월 14일

very good and simple to learn

교육 기관: Nitesh R

2020년 6월 8일

great guided project course

교육 기관: Mohanad A N

2020년 5월 29일

Good and straight to point.

교육 기관: SUGUNA M

2020년 11월 19일

good project-based course

교육 기관: K J

2020년 5월 18일

Perfect and just right

교육 기관: Gangone R

2020년 7월 3일

very useful course

교육 기관: Diego R G

2020년 5월 19일

Great project!

교육 기관: Richa G

2020년 7월 6일

Nice Course.

교육 기관: MARLA S K

2020년 5월 9일

nice course

교육 기관: Partheepan

2020년 4월 9일

very useful

교육 기관: Al A C

2020년 7월 25일

great job!

교육 기관: Arvind K V

2020년 5월 19일

Osm course