Multiple Linear Regression with scikit-learn

4.5
별점
286개의 평가
제공자:
Coursera Project Network
5,710명이 이미 등록했습니다.
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Build univariate and multivariate linear regression models in Python using scikit-learn

Perform Exploratory Data Analysis (EDA) and data visualization with seaborn

Evaluate model fit and accuracy using numerical measures such as R² and RMSE

Model interaction effects in regression using basic feature engineering techniques

Clock2 hours
Beginner초급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this 2-hour long project-based course, you will build and evaluate multiple linear regression models using Python. You will use scikit-learn to calculate the regression, while using pandas for data management and seaborn for data visualization. The data for this project consists of the very popular Advertising dataset to predict sales revenue based on advertising spending through media such as TV, radio, and newspaper. By the end of this project, you will be able to: - Build univariate and multivariate linear regression models using scikit-learn - Perform Exploratory Data Analysis (EDA) and data visualization with seaborn - Evaluate model fit and accuracy using numerical measures such as R² and RMSE - Model interaction effects in regression using basic feature engineering techniques This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, this means instant access to a cloud desktop with Jupyter Notebooks and Python 3.7 with all the necessary libraries pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

Machine LearningPython ProgrammingData Visualization (DataViz)Linear RegressionScikit-Learn

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Introduction and Overview

  2. Load the Data

  3. Relationships between Features and Target

  4. Multiple Linear Regression Model

  5. Feature Selection

  6. Model Evaluation Using Train/Test Split and Model Metrics

  7. Interaction Effect (Synergy) in Regression Analysis

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

검토

MULTIPLE LINEAR REGRESSION WITH SCIKIT-LEARN의 최상위 리뷰

모든 리뷰 보기

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.