TensorFlow Serving with Docker for Model Deployment

4.8
별점

49개의 평가

제공자:

4,514명이 이미 등록했습니다.

학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.
1.5 hours
중급
다운로드 필요 없음
분할 화면 동영상
영어
데스크톱 전용

This is a hands-on, guided project on deploying deep learning models using TensorFlow Serving with Docker. In this 1.5 hour long project, you will train and export TensorFlow models for text classification, learn how to deploy models with TF Serving and Docker in 90 seconds, and build simple gRPC and REST-based clients in Python for model inference. With the worldwide adoption of machine learning and AI by organizations, it is becoming increasingly important for data scientists and machine learning engineers to know how to deploy models to production. While DevOps groups are fantastic at scaling applications, they are not the experts in ML ecosystems such as TensorFlow and PyTorch. This guided project gives learners a solid, real-world foundation of pushing your TensorFlow models from development to production in no time! Prerequisites: In order to successfully complete this project, you should be familiar with Python, and have prior experience with building models with Keras or TensorFlow. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

  • Deep Learning

  • Docker

  • TensorFlow Serving

  • Tensorflow

  • model deployment

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

검토

TENSORFLOW SERVING WITH DOCKER FOR MODEL DEPLOYMENT의 최상위 리뷰

모든 리뷰 보기

자주 묻는 질문