About this 전문분야
6,235

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 일정

유연한 마감을 설정하고 유지 관리합니다.

초급 단계

완료하는 데 약 3개월 필요

매주 10시간 권장

스페인어

자막: 스페인어

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 일정

유연한 마감을 설정하고 유지 관리합니다.

초급 단계

완료하는 데 약 3개월 필요

매주 10시간 권장

스페인어

자막: 스페인어

How the 전문분야 Works

강좌 수강

Coursera 전문 분야는 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 전문 분야에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 하나의 전문 분야에 속하는 강좌에 등록하면 해당 전문 분야 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료해도 됩니다. — 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.

실습 프로젝트

모든 전문 분야에는 실습 프로젝트가 포함되어 있습니다. 전문 분야를 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 전문 분야에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우 각 강좌를 완료해야 프로젝트를 시작할 수 있습니다.

수료증 취득

모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

how it works

이 전문분야에는 5개의 강좌가 있습니다.

강좌1

Big Data: el impacto de los datos masivos en la sociedad actual

4.6
(161개의 평가)
La digitalización, la informática e Internet han producido lo que se puede denominar una revolución en la acumulación y utilización de datos. Podemos almacenar y conservar más datos que nunca antes en la historia. Podemos estudiarlos y analizarlos para tomar decisiones y mejorar procesos. Esta nueva capacidad tiene un enorme impacto en todos los ámbitos de la vida social. A lo largo de este curso: • Conoceremos qué es el Big Data y cuáles son sus características fundamentales • Exploraremos el crecimiento continuo de datos, analizaremos el impacto potencial en muchos campos de la actividad humana y nos preguntaremos por los retos y desafíos que suponen en todos los órdenes de la vida social. • Conoceremos las características de cada una de las fases del procesamiento Big Data, adquiriendo un lenguaje adecuado para la descripción de los procesos. Dispondremos así de una visión de conjunto sobre sistema de tratamiento de grandes datos en la actualidad. • Conoceremos las principales áreas de aplicación de los datos masivos. Qué tipos de transformaciones están imponiendo en la organización del trabajo y en la gestión. Qué desafíos imponen en la gobernanza, la economía y el trabajo. Qué mejoras introducen y qué riesgos representan. • Estudiaremos las principales tecnologías e infraestructuras para el almacenamiento y procesado de grandes volúmenes de datos....
강좌2

Big Data: adquisición y almacenamiento de datos

4.5
(22개의 평가)
¿Estás interesado en tener un conocimiento más detallado sobre las herramientas y aplicaciones Big Data? En este curso aprenderás los principios para comprender la terminología, conceptos básicos y herramientas más importantes para resolver problemas de análisis de datos enfocándonos en los problemas y las aplicaciones. El objetivo es proporcionar una visión de sistema para entender los retos más importantes que nos encontramos cuando trabajamos en entornos con grandes volúmenes de datos. En el curso se plantea una introducción a diversas herramientas utilizadas de forma común en la comunidad como Hadoop, Spark o Hive y tendrás que resolver diferentes retos de análisis de datos mediante su uso. Al terminar el curso habrás adquirido conocimientos sobre el ecosistema de herramientas Big Data incluyendo ejemplos de uso con problemas industriales y científicos. Tendrás una serie de recursos sobre cómo un análisis a realizar se traduce en una serie de operaciones de recolección de datos, monitorización, almacenamiento, análisis y creación de informes sobre los resultados obtenidos. También adquirirás un criterio para elegir cuál es la herramienta más adecuada para resolver un cierto problema de análisis de datos a partir de los requerimientos de uso de las herramientas. El curso está orientado tanto a estudiantes universitarios de primeros cursos de estudios universitarios relacionados con la informática, la ingeniería o las matemáticas, como a otros estudiantes con conocimientos de programación, interesados en aprender cómo utilizar de análisis de datos con herramientas de código abierto. Para realizar los ejercicios es necesario utilizar una máquina virtual que deberá ser instalada en tu ordenador....
강좌3

Big Data: procesamiento y análisis

4.2
(16개의 평가)
El presente curso tiene como objetivo presentar los métodos y técnicas básicos para el procesamiento y análisis de datos en el contexto de Big Data. No prentende ser un curso exhaustivo sobre Machine Learning ni sobre métodos Estadísticos, simplemente se pretenden mostrar las características principales de estas técnicas para que el alumno pueda tener una visión general de las opciones que ofrece el análisis de datos para poder explorar, confirmar indicios y en definitiva, extraer conclusiones. El curso está dirigido a estudiantes y profesionales que deseen aproximarse al procesamiento y análisis de datos en Big Data. Aunque no es un requisito indispensable tener experiencia en análisis de datos o en entornos Big Data, el curso puede resultar especialmente interesante a estudiantes con ciertos conocimientos de análisis de datos que deseen introducirse en el entorno Big Data, por otro lado, también resultará interesante a aquellos estudiantes con cierta experiencia en entornos Big Data que deseen adquirir una mayor visión analítica. En este sentido el curso pretende ofrecer recursos realistas en el contexto Big Data y por este motivo se trabajará des de una máquina virtual con la aplicación Jupyter como enlace para desarrollar los modelos y técnicas con PySpark. El curso está dividido en 4 módulos más o menos independientes aunque se recomienda realizarlos de forma secuencial. En el Módulo 1 se presentan los diferentes problemas y técnicas más habitules para analizar datos desde una perspectiva general. También se introduce el caso de estudio y las herramientas de trabajo que se emplearán. El resto de módulo está dedicado a la tarea de Exploración y Pre-Proceso de los datos, incluyendo consultas, tareas de gestión, resúmenes numéricos y gráficos. Los siguientes módulos se focalizan en las técnicas de análisis. El Módulo 2 se centra en técnicas de modelización básicas, en particular regresión y regresión logística. Además de repasar las etapas de calibración del modelo, también se incluyen las etapas de validación y simplificación. El módulo 3 está plenamente dedicado a la técnica de Árboles de Regresión y Clasificación. También se incluyen los bosques aleatorios. El módulo final contiene la técnica de Redes Neuronales para clasificación y también una introducción a las técnicas No Supervisadas, en particular, reducción de dimensión a través del análisis de componentes principales y la clasificación automática a través del análisis de clústers....
강좌4

Big Data: visualización de datos

4.7
(7개의 평가)
“Visualización de datos” es el cuarto curso de la especialización “Biga Data- Uso práctico de datos masivos. Organizado en cuatro semanas, tiene por objetivo motivar e introducir los conceptos clave de la visualización de datos así como mostrar ejemplos en diferentes contextos. Además, se proporcionan criterios para formular el problema y elegir las herramientas más adecuadas para obtener una correcta visualización. Este debe ser un curso introductorio, motivador e inspirador para la narración de historias a través de la visualización de sus datos. Los cuatro módulos en los que se estructura el curso son los siguientes: MÓDULO 1: Contexto para la visualización de datos hoy MÓDULO 2: Herramientas de análisis y visualización de datos MÓDULO 3: El proceso de creación de una visualización de datos MÓDULO 4: Otros aspectos de la visualización de datos...

강사

Avatar

Jorge Carretero

Profesor
Cosmology Projects Scientist and Data Support
Avatar

Llorenç Badiella

Director Servei d'Estadística Aplicada UAB
Universitat Autònoma de Barcelona
Avatar

Isabel Serra

Doctora
Centre de Recerca Matemàtica
Avatar

Tomás Margalef

Catedrático
Dept. de Arquitectura de Computadores y Sistemas Operativos
Avatar

Santiago González

Director de Tecnologías y de Innovación
Synergic Partners
Avatar

Nadia Tonello

Profesora
Cosmology Projects Scientist and Data Support
Avatar

Andrés Cencerrado

Profesor
Área de Arquitectura y de Tecnología de Computadores
Avatar

Antonio Espinosa

Profesor Agregado Interino
Departamento de Arquitectura de Computadores y Sistemas Operativos
Avatar

Ignasi Alcalde

Profesor
UOC
Avatar

Carme Artigas Brugal

Co-Founder & CEO
Synergic Partners
Avatar

Francesc Torradeflot

Profesor
Astrophysics and Cosmology Software Engineer
Avatar

Antonio Pita

Director de Operaciones y Soluciones
Synergic Partners
Avatar

Pau Tallada

Profesor
Astrophysics and Cosmology Software Engineer

바르셀로나 자치대학교 정보

The Universitat Autònoma de Barcelona (UAB) is a public university located in the metropolitan area of Barcelona. International in its outlook, it is fully consolidated within its local surroundings, and offers quality education in close association with research activity, the transfer of scientific, technological, cultural and educational knowledge, the promotion of its human potential and the responsible management of available resources. The UAB currently offers 81 degrees, 130 official Master Programmes and 183 UAB-specific Masters Degrees. In addition, it offers 174 lifelong learning programmes and 65 PhD Programmes, 27 of which have been distinguished through Quality Awards. The UAB has a total of over 3,500 teaching and research staff, over 2,000 administrative staff and over 40,000 students....

자주 묻는 질문

  • 네! 시작하려면 관심 있는 강좌 카드를 클릭하여 등록합니다. 강좌를 등록하고 완료하면 공유할 수 있는 인증서를 얻거나 강좌를 청강하여 강좌 자료를 무료로 볼 수 있습니다. 전문 분야 과정에 있는 강좌에 등록하면, 전체 전문 분야에 등록하게 됩니다. 학습자 대시보드에서 진행 사항을 추적할 수 있습니다.

  • 이 강좌는 100% 온라인으로 진행되므로 강의실에 직접 참석할 필요가 없습니다. 웹 또는 모바일 장치를 통해 언제 어디서든 강의, 읽기 자료, 과제에 접근할 수 있습니다.

  • 이 전문 분야는 대학 학점을 제공하지 않지만, 일부 대학에서 선택적으로 전문 분야 인증서를 학점으로 인정할 수도 있습니다. 자세한 내용은 해당 기관에 문의하세요.

  • El tiempo dependerá de tu propio ritmo, pero la mayoría de alumnos pueden completarla en 5 meses.

  • En el diseño del Programa Especializado hemos intentado minimizar los conocimientos previos necesarios, aun cundo se recomienda disponer de conocimientos básicos de informática.

    Sí que creemos fundamental la motivación por la temática. Los distintos cursos van dirigidos a personas, con o sin formación universitaria pero muy interesados y motivados en conocer lo que hay detrás del análisis de datos, y en particular de los datos masivos.

  • Aun cuando no es imprescindible que sigas un orden específico, para un mayor aprovechamiento del Programa especializado te recomendamos que sigas el orden propuesto. Por otra parte, puedes tomar cursos individuales si estás interesado en una temática específica.

  • Completar el curso no da derecho a créditos de la Universidad, aun cuando puede haber Universidades que acepten los certificados del Programa Especializado como créditos convalidables. Debes validarlo en cualquier caso con tu institución.

  • Tal y como figura en la descripción del curso, si finalizas el programa serás capaz de :

    1. Entender el impacto del tratamiento de datos masivos en la sociedad actual

    2. Entender y explicar la procedencia y características de los datos masivos.

    3. Adquirir, preparar, almacenar, analizar, visualizar y manejar grandes conjuntos de datos

    4. Extraer información de los datos

    5. Trabajar dentro del ecosistema Hadoop

    6. Poder contestar preguntas en base al análisis de datos

  • No, aunque se recomienda tener algunos conocimientos básicos para un mejor aprovechamiento de los cursos y del Programa Especializado.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.