- Cloud Platforms
- Cloud API
- Machine Learning
- Cloud Databases
- Cloud Computing
- Github
- Devops
Building Cloud Computing Solutions at Scale 특화 과정
Launch Your Career in Cloud Computing. Master strategies and tools to become proficient in developing data science and machine learning solutions in the Cloud
제공자:
배울 내용
Build websites involving serverless technology and virtual machines, using the best practices of DevOps
Create Microservices using technologies like Flask and Kubernetes that are continuously deployed to a Cloud platform: AWS, Azure or GCP
Apply Machine Learning Engineering to build a Flask web application that serves out Machine Learning predictions
귀하가 습득할 기술
이 전문 분야 정보
응용 학습 프로젝트
Each course concludes with a real-world project where you have an opportunity to build a Cloud-native solution. For each Cloud solution that you develop, you will also create a demo video and GitHub repository of code that can be showcased in your digital portfolio for employers. By the end of this Specialization, you will be well-equipped to begin designing Cloud-native data engineering and machine learning solutions.
Students should have beginner level Linux and intermediate level Python skills.
Students should have beginner level Linux and intermediate level Python skills.
특화 과정 이용 방법
강좌 수강
Coursera 특화 과정은 한 가지 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 특화 과정에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 특화 과정에 속하는 강좌에 등록하면 해당 특화 과정 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료할 수도 있으며, 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.
실습 프로젝트
모든 특화 과정에는 실습 프로젝트가 포함되어 있습니다. 특화 과정을 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 특화 과정에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우, 다른 모든 강좌를 완료해야 프로젝트 강좌를 시작할 수 있습니다.
수료증 취득
모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

이 전문 분야에는 4개의 강좌가 있습니다.
Cloud Computing Foundations
Welcome to the first course in the Building Cloud Computing Solutions at Scale Specialization! In this course, you will learn how to build foundational Cloud computing infrastructure, including websites involving serverless technology and virtual machines. You will also learn how to apply Agile software development techniques to projects which will be useful in building portfolio projects and global-scale Cloud infrastructures.
Cloud Virtualization, Containers and APIs
Welcome to the second course in the Building Cloud Computing Solutions at Scale Specialization! In this course, you will learn to design Cloud-native systems with the fundamental building blocks of Cloud computing. These building blocks include virtual machines and containers. You will also learn how to build effective Microservices using technologies like Flask and Kubernetes. Finally, you will analyze successful patterns in Operations including: Effective alerts, load testing and Kaizen.
Cloud Data Engineering
Welcome to the third course in the Building Cloud Computing Solutions at Scale Specialization! In this course, you will learn how to apply Data Engineering to real-world projects using the Cloud computing concepts introduced in the first two courses of this series. By the end of this course, you will be able to develop Data Engineering applications and use software development best practices to create data engineering applications. These will include continuous deployment, code quality tools, logging, instrumentation and monitoring. Finally, you will use Cloud-native technologies to tackle complex data engineering solutions.
Cloud Machine Learning Engineering and MLOps
Welcome to the fourth course in the Building Cloud Computing Solutions at Scale Specialization! In this course, you will build upon the Cloud computing and data engineering concepts introduced in the first three courses to apply Machine Learning Engineering to real-world projects. First, you will develop Machine Learning Engineering applications and use software development best practices to create Machine Learning Engineering applications. Then, you will learn to use AutoML to solve problems more efficiently than traditional machine learning approaches alone. Finally, you will dive into emerging topics in Machine Learning including MLOps, Edge Machine Learning and AI APIs.
제공자:

듀크대학교
Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.
자주 묻는 질문
환불 규정은 어떻게 되나요?
하나의 강좌에만 등록할 수 있나요?
재정 지원을 받을 수 있나요?
해당 강좌를 무료로 수강할 수 있나요?
이 강좌는 100% 온라인으로 진행되나요? 직접 참석해야 하는 수업이 있나요?
What will I be able to do upon completing the Specialization?
전문 분야를 완료하는 데 얼마나 걸리나요?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Will I receive a transcript from Duke University for completing this course?
전문 분야를 완료하면 대학 학점을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.