- Bayesian Inference
- Python Programming
- MCMC
- PyMC3
- Scipy
- visualization
- Statistics
- Bayesian
- Scikit-Learn
- Monte Carlo Method
Introduction to Computational Statistics for Data Scientists 특화 과정
Practical Bayesian Inference. A conceptual understanding of the techniques and the tools used to perform scalable Bayesian inference in practice with PyMC3.
제공자:

배울 내용
The basics of Bayesian modeling and inference.
A conceptual understanding of the techniques used to perform Bayesian inference in practice.
Learn how to use PyMC3 to solve real-world problems.
The basics of Probability, Bayesian statistics, modeling and inference.
귀하가 습득할 기술
이 전문 분야 정보
응용 학습 프로젝트
Implement Distributions in Python and visualize it statically using Matplotlib or Seaborn and interactively using Plot.ly.
Implement Monte Carlo Sampling algorithms in Python.
Learn the basics of PyMC3 for various Bayesian modeling including Linear Regression, Hierarchical Regression, Classification, Robust models and assessing the quality of models.
Use PyMC3 to model the disease dynamics of and infer the parameters of an SIR model of COVID-19 from real-world data.
- Some experience with Data Science using the PyData Stack of NumPy, Pandas, Scikit-learn
- Fundamentals of linear algebra and calculus
- Some experience with Data Science using the PyData Stack of NumPy, Pandas, Scikit-learn
- Fundamentals of linear algebra and calculus
특화 과정 이용 방법
강좌 수강
Coursera 특화 과정은 한 가지 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 특화 과정에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 특화 과정에 속하는 강좌에 등록하면 해당 특화 과정 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료할 수도 있으며, 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.
실습 프로젝트
모든 특화 과정에는 실습 프로젝트가 포함되어 있습니다. 특화 과정을 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 특화 과정에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우, 다른 모든 강좌를 완료해야 프로젝트 강좌를 시작할 수 있습니다.
수료증 취득
모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

이 전문 분야에는 3개의 강좌가 있습니다.
Introduction to Bayesian Statistics
The objective of this course is to introduce Computational Statistics to aspiring or new data scientists. The attendees will start off by learning the basics of probability, Bayesian modeling and inference. This will be the first course in a specialization of three courses .Python and Jupyter notebooks will be used throughout this course to illustrate and perform Bayesian modeling. The course website is located at https://sjster.github.io/introduction_to_computational_statistics/docs/index.html. The course notebooks can be downloaded from this website by following the instructions on page https://sjster.github.io/introduction_to_computational_statistics/docs/getting_started.html.
Bayesian Inference with MCMC
The objective of this course is to introduce Markov Chain Monte Carlo Methods for Bayesian modeling and inference, The attendees will start off by learning the the basics of Monte Carlo methods. This will be augmented by hands-on examples in Python that will be used to illustrate how these algorithms work. This will be the second course in a specialization of three courses .Python and Jupyter notebooks will be used throughout this course to illustrate and perform Bayesian modeling with PyMC3. The course website is located at https://sjster.github.io/introduction_to_computational_statistics/docs/index.html. The course notebooks can be downloaded from this website by following the instructions on page https://sjster.github.io/introduction_to_computational_statistics/docs/getting_started.html.
Introduction to PyMC3 for Bayesian Modeling and Inference
The objective of this course is to introduce PyMC3 for Bayesian Modeling and Inference, The attendees will start off by learning the the basics of PyMC3 and learn how to perform scalable inference for a variety of problems. This will be the final course in a specialization of three courses .Python and Jupyter notebooks will be used throughout this course to illustrate and perform Bayesian modeling with PyMC3.. The course website is located at https://sjster.github.io/introduction_to_computational_statistics/docs/index.html. The course notebooks can be downloaded from this website by following the instructions on page https://sjster.github.io/introduction_to_computational_statistics/docs/getting_started.html.
제공자:

Databricks
Databricks is the data and AI company. Founded by the creators of Apache Spark™, Delta Lake and MLflow, organizations like Comcast, Condé Nast, Nationwide and H&M rely on Databricks’ open and unified platform to enable data engineers, scientists and analysts to collaborate and innovate faster.
자주 묻는 질문
환불 규정은 어떻게 되나요?
하나의 강좌에만 등록할 수 있나요?
재정 지원을 받을 수 있나요?
해당 강좌를 무료로 수강할 수 있나요?
이 강좌는 100% 온라인으로 진행되나요? 직접 참석해야 하는 수업이 있나요?
전문 분야를 완료하는 데 얼마나 걸리나요?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
전문 분야를 완료하면 대학 학점을 받을 수 있나요?
What will I be able to do upon completing the Specialization?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.