이 전문 분야 정보
최근 조회 25,378

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 일정

유연한 마감을 설정하고 유지 관리합니다.

중급 단계

완료하는 데 약 3개월 필요

매주 14시간 권장

영어

자막: 영어

배울 내용

  • Check

    Design computer vision application programs from scratch

  • Check

    Leverage MATLAB functionalities to implement sophisticated vision applications

  • Check

    Discern the level of complexity of vision algorithms

  • Check

    Understand the limitations of vision algorithms

귀하가 습득할 기술

MatlabMachine LearningImage ProcessingComputer ProgrammingComputer Vision

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 일정

유연한 마감을 설정하고 유지 관리합니다.

중급 단계

완료하는 데 약 3개월 필요

매주 14시간 권장

영어

자막: 영어

Specialization을(를) 수강하는 학습자

  • Machine Learning Engineers
  • Data Scientists
  • Researchers
  • Technical Solutions Engineers
  • Software Engineers

전문분야 이용 방법

강좌 수강

Coursera 전문 분야는 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 전문 분야에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 하나의 전문 분야에 속하는 강좌에 등록하면 해당 전문 분야 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료해도 됩니다. — 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.

실습 프로젝트

모든 전문 분야에는 실습 프로젝트가 포함되어 있습니다. 전문 분야를 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 전문 분야에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우 각 강좌를 완료해야 프로젝트를 시작할 수 있습니다.

수료증 취득

모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

how it works

이 전문 분야에는 4개의 강좌가 있습니다.

강좌1

Computer Vision Basics

3.8
144개의 평가
54개의 리뷰
강좌2

Image Processing, Features & Segmentation

강좌3

Stereo Vision, Dense Motion & Tracking

강좌4

Visual Recognition & Understanding

강사

Avatar

Radhakrishna Dasari

Instructor
Department of Computer Science
Avatar

Junsong Yuan

Associate Professor and Director of Visual Computing Lab
Computer Science and Engineering

뉴욕주립대학교 버펄로 캠퍼스 정보

The University at Buffalo (UB) is a premier, research-intensive public university and the largest, most comprehensive institution of the State University of New York (SUNY) system. UB offers more than 100 undergraduate degrees and nearly 300 graduate and professional programs....

뉴욕주립대학교 정보

The State University of New York, with 64 unique institutions, is the largest comprehensive system of higher education in the United States. Educating nearly 468,000 students in more than 7,500 degree and certificate programs both on campus and online, SUNY has nearly 3 million alumni around the globe....

자주 묻는 질문

  • 네! 시작하려면 관심 있는 강좌 카드를 클릭하여 등록합니다. 강좌를 등록하고 완료하면 공유할 수 있는 인증서를 얻거나 강좌를 청강하여 강좌 자료를 무료로 볼 수 있습니다. 전문 분야 과정에 있는 강좌에 등록하면, 전체 전문 분야에 등록하게 됩니다. 학습자 대시보드에서 진행 사항을 추적할 수 있습니다.

  • 이 강좌는 100% 온라인으로 진행되므로 강의실에 직접 참석할 필요가 없습니다. 웹 또는 모바일 장치를 통해 언제 어디서든 강의, 읽기 자료, 과제에 접근할 수 있습니다.

  • Time to completion can vary based on your schedule, but learners can expect to complete the specialization in 3 to 6 months.

  • This specialization is taught in MATLAB using computer vision and supporting toolboxes. Learners should have basic programming skills and experience (understanding of for loops, if/else statements), specifically in MATLAB (Mathworks provides the basics here: https://www.mathworks.com/learn/tutorials/matlab-onramp.html). Learners should also be familiar with the following: basic linear algebra (matrix vector operations and notation), 3D co-ordinate systems and transformations, basic calculus (derivatives and integration) and basic probability (random variables).

  • It is important that learners take the courses in order, since the concepts and projects are developed based on the previous course, as described below.

    · The first course focuses on providing the mathematical foundations for the entire specialization and introduces the majority of concepts covered in the next three courses.

    · The second course explores the concepts of image processing, which are used in courses 3 and 4.

    · The third course covers the concepts of dense motion and tracking, which are used in course 4.

    · The fourth course builds upon the concepts in courses 1, 2 and 3, and focuses on higher-level, sophisticated computer vision concepts and visual understanding.

  • No

  • On completion of this specialization, a learner will be able to:

    · Recognize foundational concepts of computer vision

    · Develop computer vision application programs from scratch

    · Leverage MATLAB functionalities to implement sophisticated vision applications

    · Discern the level of complexity of vision algorithms

    · Understand the limitations of vision algorithms

    · Design and build image processing applications

    · Develop 3D vision applications using a stereo imaging system

    · Implement a recognition system using machine learning algorithms

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.