- Data Collection
- Cluster Sampling
- R Programming
- Missing Data
- Data Quality
- Data Analysis
- Data Generating Process
Survey Data Collection and Analytics 특화 과정
Collect and analyze data, and communicate results. Learn to collect quality data and conduct insightful data analysis in six courses.
제공자:
귀하가 습득할 기술
이 전문 분야 정보
사전 경험이 필요하지 않습니다.
사전 경험이 필요하지 않습니다.
특화 과정 이용 방법
강좌 수강
Coursera 특화 과정은 한 가지 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 특화 과정에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 특화 과정에 속하는 강좌에 등록하면 해당 특화 과정 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료할 수도 있으며, 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.
실습 프로젝트
모든 특화 과정에는 실습 프로젝트가 포함되어 있습니다. 특화 과정을 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 특화 과정에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우, 다른 모든 강좌를 완료해야 프로젝트 강좌를 시작할 수 있습니다.
수료증 취득
모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

이 전문 분야에는 7개의 강좌가 있습니다.
Framework for Data Collection and Analysis
This course will provide you with an overview over existing data products and a good understanding of the data collection landscape. With the help of various examples you will learn how to identify which data sources likely matches your research question, how to turn your research question into measurable pieces, and how to think about an analysis plan. Furthermore this course will provide you with a general framework that allows you to not only understand each step required for a successful data collection and analysis, but also help you to identify errors associated with different data sources. You will learn some metrics to quantify each potential error, and thus you will have tools at hand to describe the quality of a data source. Finally we will introduce different large scale data collection efforts done by private industry and government agencies, and review the learned concepts through these examples. This course is suitable for beginners as well as those that know about one particular data source, but not others, and are looking for a general framework to evaluate data products.
Data Collection: Online, Telephone and Face-to-face
This course presents research conducted to increase our understanding of how data collection decisions affect survey errors. This is not a “how–to-do-it” course on data collection, but instead reviews the literature on survey design decisions and data quality in order to sensitize learners to how alternative survey designs might impact the data obtained from those surveys.
Questionnaire Design for Social Surveys
This course will cover the basic elements of designing and evaluating questionnaires. We will review the process of responding to questions, challenges and options for asking questions about behavioral frequencies, practical techniques for evaluating questions, mode specific questionnaire characteristics, and review methods of standardized and conversational interviewing.
Sampling People, Networks and Records
Good data collection is built on good samples. But the samples can be chosen in many ways. Samples can be haphazard or convenient selections of persons, or records, or networks, or other units, but one questions the quality of such samples, especially what these selection methods mean for drawing good conclusions about a population after data collection and analysis is done. Samples can be more carefully selected based on a researcher’s judgment, but one then questions whether that judgment can be biased by personal factors. Samples can also be draw in statistically rigorous and careful ways, using random selection and control methods to provide sound representation and cost control. It is these last kinds of samples that will be discussed in this course. We will examine simple random sampling that can be used for sampling persons or records, cluster sampling that can be used to sample groups of persons or records or networks, stratification which can be applied to simple random and cluster samples, systematic selection, and stratified multistage samples. The course concludes with a brief overview of how to estimate and summarize the uncertainty of randomized sampling.
제공자:

메릴랜드 대학교 칼리지파크 캠퍼스
The University of Maryland is the state's flagship university and one of the nation's preeminent public research universities. A global leader in research, entrepreneurship and innovation, the university is home to more than 37,000 students, 9,000 faculty and staff, and 250 academic programs. Its faculty includes three Nobel laureates, three Pulitzer Prize winners, 47 members of the national academies and scores of Fulbright scholars. The institution has a $1.8 billion operating budget, secures $500 million annually in external research funding and recently completed a $1 billion fundraising campaign.

미시건 대학교
The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future.
자주 묻는 질문
환불 규정은 어떻게 되나요?
하나의 강좌에만 등록할 수 있나요?
재정 지원을 받을 수 있나요?
해당 강좌를 무료로 수강할 수 있나요?
이 강좌는 100% 온라인으로 진행되나요? 직접 참석해야 하는 수업이 있나요?
전문 분야를 완료하면 대학 학점을 받을 수 있나요?
전문 분야를 완료하는 데 얼마나 걸리나요?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Will I need to retake the Questionnaire Design course if I completed it previously
What will I be able to do upon completing the Specialization?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.