이 전문 분야 정보

최근 조회 20,236
Learn modern experimental strategy, including factorial and fractional factorial experimental designs, designs for screening many factors, designs for optimization experiments, and designs for complex experiments such as those with hard-to-change factors and unusual responses. There is thorough coverage of modern data analysis techniques for experimental design, including software. Applications include electronics and semiconductors, automotive and aerospace, chemical and process industries, pharmaceutical and bio-pharm, medical devices, and many others. You can see an overview of the specialization from Dr. Montgomery here.
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인 강좌
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 일정
유연한 마감을 설정하고 유지 관리합니다.
초급 단계
완료하는 데 약 4개월 필요
매주 3시간 권장
영어
자막: 영어
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인 강좌
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 일정
유연한 마감을 설정하고 유지 관리합니다.
초급 단계
완료하는 데 약 4개월 필요
매주 3시간 권장
영어
자막: 영어

이 전문 분야에는 4개의 강좌가 있습니다.

강좌1

강좌 1

Experimental Design Basics

4.9
별점
13개의 평가
3개의 리뷰
강좌2

강좌 2

Factorial and Fractional Factorial Designs

강좌3

강좌 3

Response Surfaces, Mixtures, and Model Building

5.0
별점
7개의 평가
2개의 리뷰
강좌4

강좌 4

Random Models, Nested and Split-plot Designs

제공자:

애리조나주립대학교 로고

애리조나주립대학교

자주 묻는 질문

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • 구독하는 경우, 취소해도 요금이 청구되지 않는 7일간의 무료 평가판을 이용할 수 있습니다. 해당 기간이 지난 후에는 환불이 되지 않지만, 언제든 구독을 취소할 수 있습니다. 전체 환불 정책 보기.

  • 네! 시작하려면 관심 있는 강좌 카드를 클릭하여 등록합니다. 강좌를 등록하고 완료하면 공유할 수 있는 인증서를 얻거나 강좌를 청강하여 강좌 자료를 무료로 볼 수 있습니다. 전문 분야 과정에 있는 강좌에 등록하면, 전체 전문 분야에 등록하게 됩니다. 학습자 대시보드에서 진행 사항을 추적할 수 있습니다.

  • 예, Coursera에서는 수업료를 낼 수 없는 학습자를 위해 재정 지원을 제공합니다. 왼쪽에 있는 등록 버튼 아래 재정 지원 링크를 클릭하면 지원할 수 있습니다. 신청서를 작성하라는 메시지가 표시되며 승인되면 알림을 받습니다. 성취 프로젝트를 포함하여 전문 분야의 각 강좌에서 이 단계를 완료해야 합니다. 자세히 알아보기.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있으며 강좌를 완료하면 인증서가 발급됩니다. 강좌 내용을 읽고 보기만 원한다면 강좌를 무료로 청강할 수 있습니다. 수업료를 지급하기 어려운 경우, 재정 지원을 신청할 수 있습니다.

  • 이 강좌는 100% 온라인으로 진행되므로 강의실에 직접 참석할 필요가 없습니다. 웹 또는 모바일 장치를 통해 언제 어디서든 강의, 읽기 자료, 과제에 접근할 수 있습니다.

  • Knowledge of basic statistical methods, although the background knowledge is introduced and reviewed throughout the course as needed.

  • It is not necessary to take the courses in a specific order, but we recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept them for credit.

  • Design efficient and effective experiments to solve a wide variety of problems in science, engineering, and business where data collection and analysis is essential to success.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.