관련 경험이 어느 정도 필요합니다.
Data Engineer, Big Data and ML on Google Cloud en Français 특화 과정
Google Cloud Platform를 통한 데이터 공학. Boostez votre carrière dans le domaine de l'ingénierie des données
제공자:
이 전문 분야 정보
응용 학습 프로젝트
Cette spécialisation comporte des ateliers pratiques. Pour vous y inscrire, vous devez disposer d'un compte Google (un compte Gmail suffit) et créer un compte d'essai gratuit à Google Cloud Platform. L'essai gratuit est restreint à 12 mois d'utilisation ou à 300 $ de crédit (selon la limite atteinte en premier). Nous avons donc conçu cette spécialisation pour que vous puissiez la terminer en quatre semaines.
Ces ateliers vous permettent d'appliquer ce que vous apprenez dans les cours en vidéo. Les projets sont axés autour d'outils tels que Google BigQuery, qui sont utilisés et configurés dans Codelabs. Vous développerez ainsi une expérience pratique des concepts expliqués dans les modules.
관련 경험이 어느 정도 필요합니다.
이 전문 분야에는 5개의 강좌가 있습니다.
Google Cloud Platform Big Data and Machine Learning Fundamentals en Français
Ce cours intensif à la demande, d'une durée d'une semaine, présente aux participants les fonctionnalités de big data et de machine learning de Google Cloud Platform (GCP). Il présente rapidement Google Cloud Platform et explique plus en détail les fonctionnalités de traitement des données.
Modernizing Data Lakes and Data Warehouses with GCP en Français
Les deux principaux composants de tout pipeline de données sont les lacs de données et les entrepôts de données. Ce cours aborde les cas d'utilisation de chacun de ces systèmes de stockage, et présente en détail les solutions disponibles sur Google Cloud Platform. Il décrit également le rôle de Data Engineer et les atouts des pipelines de données pour l'entreprise, en plus d'expliquer l'intérêt de l'environnement cloud pour l'ingénierie de données. Vous vous familiariserez, dans le cadre d'exercices pratiques dans QwikLabs, aux concepts de lacs et d'entrepôts de données sur Google Cloud Platform.
Building Batch Data Pipelines on GCP en Français
En règle générale, les pipelines de données fonctionnent sur le modèle "Extraction et chargement" (EL), "Extraction, chargement et transformation" (ELT), ou "Extraction, transformation et chargement" (ETL). Dans ce cours, vous apprendrez où et quand appliquer ces différents modèles à des lots de données. Vous découvrirez également plusieurs technologies Google Cloud Platform permettant de transformer des données, y compris BigQuery, Spark exécuté sur Cloud Dataproc, les graphiques de pipelines dans Cloud Data Fusion et le traitement de données sans serveur avec Cloud Dataflow. Vous aurez en outre l'occasion de créer les composants d'un pipeline de données sur Google Cloud Platform dans le cadre d'un atelier pratique QwikLabs.
Building Resilient Streaming Analytics Systems on GCP en Français
*Remarque : Ceci est un nouveau cours proposant des contenus actualisés, différents de ceux que vous avez peut-être vus dans la précédente version de cette spécialisation.
제공자:

Google 클라우드
We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success.
자주 묻는 질문
What is the refund policy?
하나의 강좌에만 등록할 수 있나요?
Is financial aid available?
해당 강좌를 무료로 수강할 수 있나요?
이 강좌는 100% 온라인으로 진행되나요? 직접 참석해야 하는 수업이 있나요?
전문 분야를 완료하면 대학 학점을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.