Machine Learning and Reinforcement Learning in Finance 특화 과정
Reinforce Your Career: Machine Learning in Finance. Extend your expertise of algorithms and tools needed to predict financial markets.
제공자:
배울 내용
Compare ML for Finance with ML in Technology (image and speech recognition, robotics, etc.)
Describe linear regression and classification models and methods of their evaluation
Explain how Reinforcement Learning is used for stock trading
Become familiar with popular approaches to modeling market frictions and feedback effects for option trading.
귀하가 습득할 기술
이 전문 분야 정보
응용 학습 프로젝트
The specialization is essentially in ML where all examples, home assignments and course projects deal with various problems in Finance (such as stock trading, asset management, and banking applications), and the choice of topics is respectively driven by a focus on ML methods that are used by practitioners in Finance. The specialization is meant to prepare the students to work on complex machine learning projects in finance that often require both a broad understanding of the whole field of ML, and understanding of appropriateness of different methods available in a particular sub-field of ML (for example, Unsupervised Learning) for addressing practical problems they might encounter in their work.
Basic math including calculus and linear algebra, basic probability theory and statistics, and programming skills in Python.
Basic math including calculus and linear algebra, basic probability theory and statistics, and programming skills in Python.
특화 과정 이용 방법
강좌 수강
Coursera 특화 과정은 한 가지 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 특화 과정에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 특화 과정에 속하는 강좌에 등록하면 해당 특화 과정 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료할 수도 있으며, 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.
실습 프로젝트
모든 특화 과정에는 실습 프로젝트가 포함되어 있습니다. 특화 과정을 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 특화 과정에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우, 다른 모든 강좌를 완료해야 프로젝트 강좌를 시작할 수 있습니다.
수료증 취득
모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

이 전문 분야에는 4개의 강좌가 있습니다.
Guided Tour of Machine Learning in Finance
This course aims at providing an introductory and broad overview of the field of ML with the focus on applications on Finance. Supervised Machine Learning methods are used in the capstone project to predict bank closures. Simultaneously, while this course can be taken as a separate course, it serves as a preview of topics that are covered in more details in subsequent modules of the specialization Machine Learning and Reinforcement Learning in Finance.
Fundamentals of Machine Learning in Finance
The course aims at helping students to be able to solve practical ML-amenable problems that they may encounter in real life that include: (1) understanding where the problem one faces lands on a general landscape of available ML methods, (2) understanding which particular ML approach(es) would be most appropriate for resolving the problem, and (3) ability to successfully implement a solution, and assess its performance.
Reinforcement Learning in Finance
This course aims at introducing the fundamental concepts of Reinforcement Learning (RL), and develop use cases for applications of RL for option valuation, trading, and asset management.
Overview of Advanced Methods of Reinforcement Learning in Finance
In the last course of our specialization, Overview of Advanced Methods of Reinforcement Learning in Finance, we will take a deeper look into topics discussed in our third course, Reinforcement Learning in Finance.
제공자:

New York University
New York University is a leading global institution for scholarship, teaching, and research. Based in New York City with campuses and sites in 14 additional major cities across the world, NYU embraces diversity among faculty, staff and students to ensure the highest caliber, most inclusive educational experience.
자주 묻는 질문
환불 규정은 어떻게 되나요?
하나의 강좌에만 등록할 수 있나요?
재정 지원을 받을 수 있나요?
해당 강좌를 무료로 수강할 수 있나요?
이 강좌는 100% 온라인으로 진행되나요? 직접 참석해야 하는 수업이 있나요?
전문 분야를 완료하면 대학 학점을 받을 수 있나요?
전문 분야를 완료하면 대학 학점을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.