- Bash (Unix Shell)
- Database (DBMS)
- Web Application
- Python Programming
- SQL
- Vim
- Pandas
- Visual Studio Code
- Data Structure
- Data Management
- Linux
- Web Scraping
Python, Bash and SQL Essentials for Data Engineering 특화 과정
Launch Your Career in Data Engineering. Master foundational strategies and tools to become proficient in developing data engineering and machine learning solutions
제공자:
배울 내용
Develop data engineering solutions with a minimal and essential subset of the Python language and the Linux environment
Design scripts to connect and query a SQL database using Python
Use a scraping library in Python to read, identify and extract data from websites
Setup a provisioned Python project environment
귀하가 습득할 기술
이 전문 분야 정보
응용 학습 프로젝트
Each course includes integrated lab exercises using Visual Studio Code or Jupyter notebooks that give you an opportunity to practice the Python, Bash and SQL skills with real-world applications covered in each course. For each data engineering solution that you explore, you are also encouraged to create a demo video and GitHub repository of code that can be showcased in your digital portfolio for employers.By the end of this Specialization, you will have the foundational skills necessary to begin tackling more complex data engineering solutions.
Students should have beginner level Linux skills. No experience in Python is required.
Students should have beginner level Linux skills. No experience in Python is required.
특화 과정 이용 방법
강좌 수강
Coursera 특화 과정은 한 가지 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 특화 과정에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 특화 과정에 속하는 강좌에 등록하면 해당 특화 과정 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료할 수도 있으며, 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.
실습 프로젝트
모든 특화 과정에는 실습 프로젝트가 포함되어 있습니다. 특화 과정을 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 특화 과정에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우, 다른 모든 강좌를 완료해야 프로젝트 강좌를 시작할 수 있습니다.
수료증 취득
모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

이 전문 분야에는 4개의 강좌가 있습니다.
Python and Pandas for Data Engineering
In this first course of the Python, Bash and SQL Essentials for Data Engineering Specialization, you will learn how to set up a version-controlled Python working environment which can utilize third party libraries. You will learn to use Python and the powerful Pandas library for data analysis and manipulation. Additionally, you will also be introduced to Vim and Visual Studio Code, two popular tools for writing software. This course is valuable for beginning and intermediate students in order to begin transforming and manipulating data as a data engineer.
Linux and Bash for Data Engineering
In this second course of the Python, Bash and SQL Essentials for Data Engineering Specialization, you will learn the fundamentals of Linux necessary to perform data engineering tasks. Additionally, you will explore how to use both Bash and zsh configurations, and develop the syntax needed to interact and control Linux. These skills will allow you to manage and manipulate databases in a Bash environment.
Scripting with Python and SQL for Data Engineering
In this third course of the Python, Bash and SQL Essentials for Data Engineering Specialization, you will explore techniques to work effectively with Python and SQL. We will go through useful data structures in Python scripting and connect to databases like MySQL. Additionally, you will learn how to use a modern text editor to connect and run SQL queries against a real database, performing operations to load and extract data. Finally, you will use extracted data from websites using scraping techniques. These skills will allow you to work effectively when data is not readily available, or when spatial queries are required to extract useful information from databases.
Web Applications and Command-Line Tools for Data Engineering
In this fourth course of the Python, Bash and SQL Essentials for Data Engineering Specialization, you will build upon the data engineering concepts introduced in the first three courses to apply Python, Bash and SQL techniques in tackling real-world problems. First, we will dive deeper into leveraging Jupyter notebooks to create and deploy models for machine learning tasks. Then, we will explore how to use Python microservices to break up your data warehouse into small, portable solutions that can scale. Finally, you will build a powerful command-line tool to automate testing and quality control for publishing and sharing your tool with a data registry.
제공자:

듀크대학교
Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.
자주 묻는 질문
환불 규정은 어떻게 되나요?
하나의 강좌에만 등록할 수 있나요?
재정 지원을 받을 수 있나요?
해당 강좌를 무료로 수강할 수 있나요?
이 강좌는 100% 온라인으로 진행되나요? 직접 참석해야 하는 수업이 있나요?
전문 분야를 완료하는 데 얼마나 걸리나요?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
전문 분야를 완료하면 대학 학점을 받을 수 있나요?
What will I be able to do upon completing the Specialization?
Will I receive a transcript from Duke University for completing this course?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.