이 전문 분야 정보
최근 조회 12,830

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 일정

유연한 마감을 설정하고 유지 관리합니다.

중급 단계

완료하는 데 약 2개월 필요

매주 9시간 권장

영어

자막: 영어

배울 내용

  • Check

    Build recommendation systems

  • Check

    Implement collaborative filtering

  • Check

    Master spreadsheet based tools

  • Check

    Use project-association recommenders

귀하가 습득할 기술

Collaborative FilteringRecommender SystemsEvaluationLensKitMatrix Factorization

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 일정

유연한 마감을 설정하고 유지 관리합니다.

중급 단계

완료하는 데 약 2개월 필요

매주 9시간 권장

영어

자막: 영어

전문분야 이용 방법

강좌 수강

Coursera 전문 분야는 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 전문 분야에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 하나의 전문 분야에 속하는 강좌에 등록하면 해당 전문 분야 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료해도 됩니다. — 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.

실습 프로젝트

모든 전문 분야에는 실습 프로젝트가 포함되어 있습니다. 전문 분야를 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 전문 분야에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우 각 강좌를 완료해야 프로젝트를 시작할 수 있습니다.

수료증 취득

모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

how it works

이 전문 분야에는 5개의 강좌가 있습니다.

강좌1

Introduction to Recommender Systems: Non-Personalized and Content-Based

4.5
454개의 평가
91개의 리뷰
강좌2

Nearest Neighbor Collaborative Filtering

4.3
219개의 평가
51개의 리뷰
강좌3

Recommender Systems: Evaluation and Metrics

4.3
162개의 평가
23개의 리뷰
강좌4

Matrix Factorization and Advanced Techniques

4.3
138개의 평가
20개의 리뷰

강사

Avatar

Joseph A Konstan

Distinguished McKnight Professor and Distinguished University Teaching Professor
Computer Science and Engineering
Avatar

Michael D. Ekstrand

Assistant Professor
Dept. of Computer Science, Boise State University

미네소타 대학교 정보

The University of Minnesota is among the largest public research universities in the country, offering undergraduate, graduate, and professional students a multitude of opportunities for study and research. Located at the heart of one of the nation’s most vibrant, diverse metropolitan communities, students on the campuses in Minneapolis and St. Paul benefit from extensive partnerships with world-renowned health centers, international corporations, government agencies, and arts, nonprofit, and public service organizations....

자주 묻는 질문

  • 네! 시작하려면 관심 있는 강좌 카드를 클릭하여 등록합니다. 강좌를 등록하고 완료하면 공유할 수 있는 인증서를 얻거나 강좌를 청강하여 강좌 자료를 무료로 볼 수 있습니다. 전문 분야 과정에 있는 강좌에 등록하면, 전체 전문 분야에 등록하게 됩니다. 학습자 대시보드에서 진행 사항을 추적할 수 있습니다.

  • 이 강좌는 100% 온라인으로 진행되므로 강의실에 직접 참석할 필요가 없습니다. 웹 또는 모바일 장치를 통해 언제 어디서든 강의, 읽기 자료, 과제에 접근할 수 있습니다.

  • Most learners should be able to complete the specialization in 20-26 weeks.

  • Basic statistics or college algebra, and an ability to work with spreadsheets. For the honors track, you should also be comfortable implementing software in Java.

  • While each component can be useful by itself, the courses do build on each other and should be taken in order.

  • The University of Minnesota does not offer credit for completing this specialization. If you are enrolled elsewhere, you may wish to speak with your advisor or program staff to find out whether this specialization could be used for independent study credit.

  • You will understand and be able to apply the major families of recommender algorithms: non-personalized, product association, content-based, nearest-neighbor, and matrix factorization. You will know and be able to apply a variety of recommender metrics, and will be able to use this knowledge to match the correct recommender system to appplications.

  • The honors track is an optional track where learners add programming recommenders in the open source LensKit toolkit. You should be comfortable with basic data structures, algorithms, and Java to attempt the honors track.

  • This specialization is an extended and updated version of the two prior versions of Introduction to Recommender Systems that we've offered through Coursera. About 50% of the video and 80% of the assessment material are new, and there is an honors track with programming assignments (which existed in the first version of the course only, and have been re-done for this specialization). The Capstone is entirely new.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.