이 전문 분야 정보

최근 조회 35,630

공유 가능한 수료증

완료 시 수료증 획득

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 일정

유연한 마감을 설정하고 유지 관리합니다.

중급 단계

Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode

완료하는 데 약 2개월 필요

매주 10시간 권장

영어

자막: 영어

배울 내용

  • Build a Reinforcement Learning system for sequential decision making.

  • Understand the space of RL algorithms (Temporal- Difference learning, Monte Carlo, Sarsa, Q-learning, Policy Gradients, Dyna, and more).

  • Understand how to formalize your task as a Reinforcement Learning problem, and how to begin implementing a solution.

  • Understand how RL fits under the broader umbrella of machine learning, and how it complements deep learning, supervised and unsupervised learning 

귀하가 습득할 기술

Artificial Intelligence (AI)Machine LearningReinforcement LearningFunction ApproximationIntelligent Systems

공유 가능한 수료증

완료 시 수료증 획득

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 일정

유연한 마감을 설정하고 유지 관리합니다.

중급 단계

Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode

완료하는 데 약 2개월 필요

매주 10시간 권장

영어

자막: 영어

전문분야 이용 방법

강좌 수강

Coursera 특화 과정은 한 가지 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 특화 과정에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 특화 과정에 속하는 강좌에 등록하면 해당 특화 과정 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료할 수도 있으며, 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.

실습 프로젝트

모든 특화 과정에는 실습 프로젝트가 포함되어 있습니다. 특화 과정을 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 특화 과정에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우, 다른 모든 강좌를 완료해야 프로젝트 강좌를 시작할 수 있습니다.

수료증 취득

모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

how it works

이 전문 분야에는 4개의 강좌가 있습니다.

강좌1

강좌 1

Fundamentals of Reinforcement Learning

4.8
749개의 평가
190개의 리뷰
강좌2

강좌 2

Sample-based Learning Methods

4.8
368개의 평가
71개의 리뷰
강좌3

강좌 3

Prediction and Control with Function Approximation

4.8
232개의 평가
35개의 리뷰
강좌4

강좌 4

A Complete Reinforcement Learning System (Capstone)

4.6
156개의 평가
28개의 리뷰

제공자:

앨버타 대학교 로고

앨버타 대학교

Alberta Machine Intelligence Institute 로고

Alberta Machine Intelligence Institute

검토

강화 학습의 최상위 리뷰

자주 묻는 질문

  • 네! 시작하려면 관심 있는 강좌 카드를 클릭하여 등록합니다. 강좌를 등록하고 완료하면 공유할 수 있는 인증서를 얻거나 강좌를 청강하여 강좌 자료를 무료로 볼 수 있습니다. 전문 분야 과정에 있는 강좌에 등록하면, 전체 전문 분야에 등록하게 됩니다. 학습자 대시보드에서 진행 사항을 추적할 수 있습니다.

  • 이 강좌는 100% 온라인으로 진행되므로 강의실에 직접 참석할 필요가 없습니다. 웹 또는 모바일 장치를 통해 언제 어디서든 강의, 읽기 자료, 과제에 접근할 수 있습니다.

  • It is recommended that learners take between 4-6 months to complete the specialization.

  • Recommended that learners have at least one year of undergraduate computer science or 2-3 years of professional experience in software development. Experience and comfort with programming in Python required. Must be comfortable converting algorithms and pseudocode into Python. Basic understanding of concepts from statistics (distributions, sampling, expected values), linear algebra (vectors and matrices), and calculus (computing derivatives)

  • Yes, it is recommended that courses are taken sequentially.

  • Learners that complete the specialization will earn a Coursera specialization certificate signed by the professors of record, not a University of Alberta credit.

  • By the end of this specialization, you will be able to"

    • Build a Reinforcement Learning system for sequential decision making.
    • Understand the space of RL algorithms (Temporal- Difference learning, Monte Carlo, Sarsa, Q-learning, Policy Gradients, Dyna, and more).
    • Understand how to formalize your task as a Reinforcement Learning problem, and how to begin implementing a solution.
    • Understand how RL fits under the broader umbrella of machine learning, and how it complements deep learning, supervised and unsupervised learning 

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.