Comfortability with basic statistical concepts from Statistics with SAS. Familiarity with matrices and principal components analysis is helpful.
Analyzing Time Series and Sequential Data 특화 과정
Enhance your skills with SAS Visual Forecasting
제공자:

이 전문 분야 정보
응용 학습 프로젝트
In this specialization’s project, learners will discover signal components in high value series then specify custom specifications appropriate for these series. These custom specifications are incorporated into a large scale forecasting system that learners create to automate the process of model generation, model selection and forecasting. Learners accommodate recurrent events and anomalies in the process generating the data to refine the automatic forecasting system .
Comfortability with basic statistical concepts from Statistics with SAS. Familiarity with matrices and principal components analysis is helpful.
특화 과정 이용 방법
강좌 수강
Coursera 특화 과정은 한 가지 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 특화 과정에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 특화 과정에 속하는 강좌에 등록하면 해당 특화 과정 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료할 수도 있으며, 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.
실습 프로젝트
모든 특화 과정에는 실습 프로젝트가 포함되어 있습니다. 특화 과정을 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 특화 과정에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우, 다른 모든 강좌를 완료해야 프로젝트 강좌를 시작할 수 있습니다.
수료증 취득
모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

이 전문 분야에는 3개의 강좌가 있습니다.
Creating Features for Time Series Data
This course focuses on data exploration, feature creation, and feature selection for time sequences. The topics discussed include binning, smoothing, transformations, and data set operations for time series, spectral analysis, singular spectrum analysis, distance measures, and motif analysis.
Building a Large-Scale, Automated Forecasting System
In this course you learn to develop and maintain a large-scale forecasting project using SAS Visual Forecasting tools. Emphasis is initially on selecting appropriate methods for data creation and variable transformations, model generation, and model selection. Then you learn how to improve overall baseline forecasting performance by modifying default processes in the system.
Modeling Time Series and Sequential Data
In this course you learn to build, refine, extrapolate, and, in some cases, interpret models designed for a single, sequential series. There are three modeling approaches presented. The traditional, Box-Jenkins approach for modeling time series is covered in the first part of the course. This presentation moves students from models for stationary data, or ARMA, to models for trend and seasonality, ARIMA, and concludes with information about specifying transfer function components in an ARIMAX, or time series regression, model. A Bayesian approach to modeling time series is considered next. The basic Bayesian framework is extended to accommodate autoregressive variation in the data as well as dynamic input variable effects. Machine learning algorithms for time series is the third approach. Gradient boosting and recurrent neural network algorithms are particularly well suited for accommodating nonlinear relationships in the data. Examples are provided to build intuition on the effective use of these algorithms.
제공자:

SAS
Through innovative software and services, SAS empowers and inspires customers around the world to transform data into intelligence. SAS is a trusted analytics powerhouse for organizations seeking immediate value from their data. A deep bench of analytics solutions and broad industry knowledge keep our customers coming back and feeling confident. With SAS®, you can discover insights from your data and make sense of it all. Identify what’s working and fix what isn’t. Make more intelligent decisions. And drive relevant change.
자주 묻는 질문
환불 규정은 어떻게 되나요?
하나의 강좌에만 등록할 수 있나요?
재정 지원을 받을 수 있나요?
해당 강좌를 무료로 수강할 수 있나요?
이 강좌는 100% 온라인으로 진행되나요? 직접 참석해야 하는 수업이 있나요?
전문 분야를 완료하는 데 얼마나 걸리나요?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
전문 분야를 완료하면 대학 학점을 받을 수 있나요?
What will I be able to do upon completing the Specialization?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.