About this Course
3,017

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 마감일

일정에 따라 마감일을 재설정합니다.

초급 단계

완료하는 데 약 12시간 필요

권장: This is Course 2 in a 4-course specialization. Estimated workload: 15-hours per week....

영어

자막: 영어

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 마감일

일정에 따라 마감일을 재설정합니다.

초급 단계

완료하는 데 약 12시간 필요

권장: This is Course 2 in a 4-course specialization. Estimated workload: 15-hours per week....

영어

자막: 영어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 3시간 필요

Integer Foundations

Building upon the foundation of cryptography, this module focuses on the mathematical foundation including the use of prime numbers, modular arithmetic, understanding multiplicative inverses, and extending the Euclidean Algorithm. After completing this module you will be able to understand some of the fundamental math requirement used in cryptographic algorithms. You will also have a working knowledge of some of their applications....
5 videos (Total 60 min), 10 readings, 2 quizzes
5개의 동영상
Divisibility, Primes, GCD14m
Modular Arithmetic15m
Multiplicative Inverses12m
Extended Euclidean Algorithm13m
10개의 읽기 자료
Course Introduction10m
Lecture Slides - Divisibility, Primes, GCD10m
Video - Adam Spencer: Why I fell in love with monster prime numbers15m
L16: Additional Reference Material10m
Lecture Slides - Modular Arithmetic10m
L17: Additional Reference Material10m
Lecture Slides - Multiplicative Inverses10m
L18: Additional Reference Material10m
Lecture Slides - Extended Euclidean Algorithm10m
L19: Additional Reference Material10m
2개 연습문제
Practice Assessment - Integer Foundation18m
Graded Assessment - Integer Foundation16m
2
완료하는 데 3시간 필요

Modular Exponentiation

A more in-depth understanding of modular exponentiation is crucial to understanding cryptographic mathematics. In this module, we will cover the square-and-multiply method, Eulier's Totient Theorem and Function, and demonstrate the use of discrete logarithms. After completing this module you will be able to understand some of the fundamental math requirement for cryptographic algorithms. You will also have a working knowledge of some of their applications....
4 videos (Total 51 min), 9 readings, 2 quizzes
4개의 동영상
Euler's Totient Theorem16m
Eulers Totient Function12m
Discrete Logarithms15m
9개의 읽기 자료
Lecture Slides - Square-and-Multiply10m
Video - Modular exponentiation made easy10m
L20: Additional Reference Material10m
Lecture Slide - Euler's Totient Theorem10m
L21: Additional Reference Material10m
Lecture Slide - Eulers Totient Function10m
L22: Additional Reference Material10m
Lecture Slide - Discrete Logarithms10m
L23: Additional Reference Material10m
2개 연습문제
Practice Assessment - Modular Exponentiation12m
Graded Assessment - Modular Exponentiation20m
3
완료하는 데 3시간 필요

Chinese Remainder Theorem

The modules builds upon the prior mathematical foundations to explore the conversion of integers and Chinese Remainder Theorem expression, as well as the capabilities and limitation of these expressions. After completing this module, you will be able to understand the concepts of Chinese Remainder Theorem and its usage in cryptography....
3 videos (Total 25 min), 5 readings, 2 quizzes
3개의 동영상
Moduli Restrictions, CRT-to-Integer Conversions10m
CRT Capabilities and Limitations8m
5개의 읽기 자료
Lecture Slide - CRT Concepts, Integer-to-CRT Conversions30m
L24: Additional Reference Material10m
Lecture Slide - Moduli Restrictions, CRT-to-Integer Conversions30m
Lecture Slide - Moduli Restrictions, CRT-to-Integer Conversions30m
Video - How they found the World's Biggest Prime Number - Numberphile12m
2개 연습문제
Practice Assessment - Chinese Remainder Theorem12m
Graded Assessment - Chinese Remainder Theorem20m
4
완료하는 데 3시간 필요

Primality Testing

Finally we will close out this course with a module on Trial Division, Fermat Theorem, and the Miller-Rabin Algorithm. After completing this module, you will understand how to test for an equality or set of equalities that hold true for prime values, then check whether or not they hold for a number that we want to test for primality....
3 videos (Total 36 min), 8 readings, 3 quizzes
3개의 동영상
Fermat's Primality9m
Miller-Rabin13m
8개의 읽기 자료
Lecture Slide - Trial Division10m
L27: Additional Reference Material10m
Lecture Slide - Fermat's Primality10m
L28: Additional Reference Material10m
Lecture Slide - Miller-Rabin10m
Video - James Lyne: Cryptography and the power of randomness10m
L29: Additional Reference Material10m
The Science of Encryption10m
3개 연습문제
Practice Assessment - Primality Testing12m
Graded Assessment - Primality Testing20m
Course Project8m

강사

Avatar

William Bahn

Lecturer
Computer Science
Avatar

Richard White

Assistant Research Professor
Computer Science
Avatar

Sang-Yoon Chang

Assistant Professor
Computer Science

콜로라도 대학교 정보

The University of Colorado is a recognized leader in higher education on the national and global stage. We collaborate to meet the diverse needs of our students and communities. We promote innovation, encourage discovery and support the extension of knowledge in ways unique to the state of Colorado and beyond....

Introduction to Applied Cryptography 전문 분야 정보

Cryptography is an essential component of cybersecurity. The need to protect sensitive information and ensure the integrity of industrial control processes has placed a premium on cybersecurity skills in today’s information technology market. Demand for cybersecurity jobs is expected to rise 6 million globally by 2019, with a projected shortfall of 1.5 million, according to Symantec, the world’s largest security software vendor. According to Forbes, the cybersecurity market is expected to grow from $75 billion in 2015 to $170 billion by 2020. In this specialization, students will learn basic security issues in computer communications, classical cryptographic algorithms, symmetric-key cryptography, public-key cryptography, authentication, and digital signatures. These topics should prove useful to those who are new to cybersecurity, and those with some experience....
Introduction to Applied Cryptography

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.