최근 조회 241,852

## 50%

가 이 강좌를 수료한 후 새로운 커리어를 시작함

## 50%

가 이 강좌를 통해 확실한 경력상 이점을 얻음
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 마감일
일정에 따라 마감일을 재설정합니다.
초급 단계
완료하는 데 약 20시간 필요
영어
자막: 영어

### 배울 내용

• Matrices

• Systems of Linear Equations

• Vector Spaces

• Eigenvalues and eigenvectors

## 귀하가 습득할 기술

Linear AlgebraEngineering Mathematics

## 50%

가 이 강좌를 수료한 후 새로운 커리어를 시작함

## 50%

가 이 강좌를 통해 확실한 경력상 이점을 얻음
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 마감일
일정에 따라 마감일을 재설정합니다.
초급 단계
완료하는 데 약 20시간 필요
영어
자막: 영어

### 제공자: ## 강의 계획 - 이 강좌에서 배울 내용

콘텐츠 평가96%(4,297개의 평가)
1

완료하는 데 5시간 필요

## MATRICES

완료하는 데 5시간 필요
11개 동영상 (총 84분), 25 개의 읽기 자료, 5 개의 테스트
11개의 동영상
Introduction1m
Definition of a Matrix | Lecture 17m
Addition and Multiplication of Matrices | Lecture 210m
Special Matrices | Lecture 39m
Transpose Matrix | Lecture 49m
Inner and Outer Products | Lecture 59m
Inverse Matrix | Lecture 612m
Orthogonal Matrices | Lecture 74m
Rotation Matrices | Lecture 88m
Permutation Matrices | Lecture 96m
25개의 읽기 자료
Welcome and Course Information1m
How to Write Math in the Discussions Using MathJax1m
Construct Some Matrices5m
AB=AC Does Not Imply B=C5m
Matrix Multiplication Does Not Commute5m
Associative Law for Matrix Multiplication10m
AB=0 When A and B Are Not zero10m
Product of Diagonal Matrices5m
Product of Triangular Matrices10m
Transpose of a Matrix Product10m
Any Square Matrix Can Be Written as the Sum of a Symmetric and Skew-Symmetric Matrix5m
Construction of a Square Symmetric Matrix5m
Example of a Symmetric Matrix10m
Sum of the Squares of the Elements of a Matrix10m
Inverses of Two-by-Two Matrices5m
Inverse of a Matrix Product10m
Inverse of the Transpose Matrix10m
Uniqueness of the Inverse10m
Product of Orthogonal Matrices5m
The Identity Matrix is Orthogonal5m
Inverse of the Rotation Matrix5m
Three-dimensional Rotation10m
Three-by-Three Permutation Matrices10m
Inverses of Three-by-Three Permutation Matrices10m
5개 연습문제
Diagnostic Quiz5m
Matrix Definitions10m
Transposes and Inverses10m
Orthogonal Matrices10m
Week One Assessment30m
2

완료하는 데 4시간 필요

## SYSTEMS OF LINEAR EQUATIONS

완료하는 데 4시간 필요
7개 동영상 (총 71분), 6 개의 읽기 자료, 3 개의 테스트
7개의 동영상
Gaussian Elimination | Lecture 1014m
Reduced Row Echelon Form | Lecture 118m
Computing Inverses | Lecture 1213m
Elementary Matrices | Lecture 1311m
LU Decomposition | Lecture 1410m
Solving (LU)x = b | Lecture 1511m
6개의 읽기 자료
Gaussian Elimination15m
Reduced Row Echelon Form15m
Computing Inverses15m
Elementary Matrices5m
LU Decomposition15m
Solving (LU)x = b10m
3개 연습문제
Gaussian Elimination20m
LU Decomposition15m
Week Two Assessment30m
3

완료하는 데 5시간 필요

## VECTOR SPACES

완료하는 데 5시간 필요
13개 동영상 (총 140분), 14 개의 읽기 자료, 5 개의 테스트
13개의 동영상
Vector Spaces | Lecture 167m
Linear Independence | Lecture 179m
Span, Basis and Dimension | Lecture 1810m
Gram-Schmidt Process | Lecture 1913m
Gram-Schmidt Process Example | Lecture 209m
Null Space | Lecture 2112m
Application of the Null Space | Lecture 2214m
Column Space | Lecture 239m
Row Space, Left Null Space and Rank | Lecture 2414m
Orthogonal Projections | Lecture 2511m
The Least-Squares Problem | Lecture 2610m
Solution of the Least-Squares Problem | Lecture 2715m
14개의 읽기 자료
Zero Vector5m
Examples of Vector Spaces5m
Linear Independence5m
Orthonormal basis5m
Gram-Schmidt Process5m
Gram-Schmidt on Three-by-One Matrices5m
Gram-Schmidt on Four-by-One Matrices10m
Null Space10m
Underdetermined System of Linear Equations10m
Column Space5m
Fundamental Matrix Subspaces10m
Orthogonal Projections5m
Setting Up the Least-Squares Problem5m
Line of Best Fit5m
5개 연습문제
Vector Space Definitions15m
Gram-Schmidt Process15m
Fundamental Subspaces15m
Orthogonal Projections15m
Week Three Assessment30m
4

완료하는 데 5시간 필요

## EIGENVALUES AND EIGENVECTORS

완료하는 데 5시간 필요
13개 동영상 (총 120분), 20 개의 읽기 자료, 4 개의 테스트
13개의 동영상
Two-by-Two and Three-by-Three Determinants | Lecture 288m
Laplace Expansion | Lecture 2913m
Leibniz Formula | Lecture 3011m
Properties of a Determinant | Lecture 3115m
The Eigenvalue Problem | Lecture 3212m
Finding Eigenvalues and Eigenvectors (1) | Lecture 3310m
Finding Eigenvalues and Eigenvectors (2) | Lecture 347m
Matrix Diagonalization | Lecture 359m
Matrix Diagonalization Example | Lecture 3615m
Powers of a Matrix | Lecture 375m
Powers of a Matrix Example | Lecture 386m
Concluding Remarks3m
20개의 읽기 자료
Determinant of the Identity Matrix5m
Row Interchange5m
Determinant of a Matrix Product10m
Compute Determinant Using the Laplace Expansion5m
Compute Determinant Using the Leibniz Formula5m
Determinant of a Matrix With Two Equal Rows5m
Determinant is a Linear Function of Any Row5m
Determinant Can Be Computed Using Row Reduction5m
Compute Determinant Using Gaussian Elimination5m
Characteristic Equation for a Three-by-Three Matrix10m
Eigenvalues and Eigenvectors of a Two-by-Two Matrix5m
Eigenvalues and Eigenvectors of a Three-by-Three Matrix10m
Complex Eigenvalues5m
Linearly Independent Eigenvectors5m
Invertibility of the Eigenvector Matrix5m
Diagonalize a Three-by-Three Matrix10m
Matrix Exponential5m
Powers of a Matrix10m
Acknowledgments
4개 연습문제
Determinants15m
The Eigenvalue Problem15m
Matrix Diagonalization15m
Week Four Assessment30m

## 자주 묻는 질문

• Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

• The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

• The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.