Hyperparameter Tuning with Neural Network Intelligence

4.8
별점
19개의 평가
제공자:
Coursera Project Network
2,437명이 이미 등록했습니다.
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Create and run hyperparameter tuning experiments using NNI

Clock2 hours
Intermediate중급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this 2-hour long guided project, we will learn the basics of using Microsoft's Neural Network Intelligence (NNI) toolkit and will use it to run a Hyperparameter tuning experiment on a Neural Network. NNI is an open source, AutoML toolkit created by Microsoft which can help machine learning practitioners automate Feature engineering, Hyperparameter tuning, Neural Architecture search and Model compression. In this guided project, we are going to take a look at using NNI to perform hyperparameter tuning. Please note that we are going to learn to use the NNI toolkit for hyperparameter tuning, and are not going to implement the tuning algorithms ourselves. We will use the popular MNIST dataset and train a simple Neural Network to learn to classify images of hand-written digits from the dataset. Once a basic script is in place, we will use the NNI toolkit to run a hyperparameter tuning experiment to find optimal values for batch size, learning rate, choice of activation function for the hidden layer, number of hidden units for the hidden layer, and dropout rate for the dropout layer. To be able to complete this project successfully, you should be familiar with the Python programming language. You should also be familiar with Neural Networks, TensorFlow and Keras. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

Deep LearningArtificial Neural NetworkMachine Learningautomlhyperparameter tuning

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Introduction

  2. Rhyme Interface

  3. Load Data

  4. Create Model

  5. Model Training

  6. Hyperparameter Search Space

  7. Creating and Running the Experiment

  8. Final Results

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

검토

HYPERPARAMETER TUNING WITH NEURAL NETWORK INTELLIGENCE의 최상위 리뷰

모든 리뷰 보기

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.