Image Compression and Generation using Variational Autoencoders in Python

4.7
별점
68개의 평가
제공자:
Coursera Project Network
3,156명이 이미 등록했습니다.
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

How to preprocess and prepare data for vision tasks using PyTorch

What a variational autoencoder is and how to train one

How to compress, reconstruct, and generate new images using a generative model

Clock90 minutes
Intermediate중급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this 1-hour long project, you will be introduced to the Variational Autoencoder. We will discuss some basic theory behind this model, and move on to creating a machine learning project based on this architecture. Our data comprises 60.000 characters from a dataset of fonts. We will train a variational autoencoder that will be capable of compressing this character font data from 2500 dimensions down to 32 dimensions. This same model will be able to then reconstruct its original input with high fidelity. The true advantage of the variational autoencoder is its ability to create new outputs that come from distributions that closely follow its training data: we can output characters in brand new fonts. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

개발할 기술

  • Image Compression
  • Machine Learning
  • Vision

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. An introduction to the variational autoencoder and our project

  2. Dataset visualization and preprocessing

  3. Dataset split into training and validation sets

  4. U​se data loaders to handle memory overload

  5. Create VAE architecture

  6. Create training loop for VAE

  7. R​esults of our model and short introduction to other potential projects using a VAE

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

강사

검토

IMAGE COMPRESSION AND GENERATION USING VARIATIONAL AUTOENCODERS IN PYTHON의 최상위 리뷰

모든 리뷰 보기

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.