Mining Quality Prediction Using Machine & Deep Learning

4.8
별점
21개의 평가
제공자:
Coursera Project Network
2,142명이 이미 등록했습니다.
학습자는 이 안내 프로젝트에서 다음을 수행하게 됩니다.

Train Artificial Neural Network models to perform regression tasks

Understand the theory and intuition behind regression models and train them in Scikit Learn

Understand the difference between various regression models KPIs such as MSE, RMSE, MAE, R2, adjusted R2

Clock1.5 hours
Beginner초급
Cloud다운로드 필요 없음
Video분할 화면 동영상
Comment Dots영어
Laptop데스크톱 전용

In this 1.5-hour long project-based course, you will be able to: - Understand the theory and intuition behind Simple and Multiple Linear Regression. - Import Key python libraries, datasets and perform data visualization - Perform exploratory data analysis and standardize the training and testing data. - Train and Evaluate different regression models using Sci-kit Learn library. - Build and train an Artificial Neural Network to perform regression. - Understand the difference between various regression models KPIs such as MSE, RMSE, MAE, R2, and adjusted R2. - Assess the performance of regression models and visualize the performance of the best model using various KPIs.

개발할 기술

regression modelsDeep LearningArtificial Intelligence (AI)Machine LearningPython Programming

단계별 학습

작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.

  1. Understand the problem statement and business case

  2. Import libraries/datasets and perform data exploration

  3. Perform data visualization

  4. Prepare the data before model training

  5. Train and evaluate a linear regression model

  6. Train and evaluate a decision tree and random forest models

  7. Understand the theory and intuition behind artificial neural networks

  8. Train an artificial neural network to perform regression task

  9. Compare models and calculate regression KPIs

안내형 프로젝트 진행 방식

작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.

분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.

자주 묻는 질문

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.