Semantic Segmentation with Amazon Sagemaker
73개의 평가

6,224명이 이미 등록했습니다.
Prepare data for Sagemaker Semantic Segmentation.
Train a model using Sagemaker.
Deploy a trained model using Sagemaker.
인터뷰에서 이 안내형 체험 보여주기
73개의 평가
6,224명이 이미 등록했습니다.
Prepare data for Sagemaker Semantic Segmentation.
Train a model using Sagemaker.
Deploy a trained model using Sagemaker.
인터뷰에서 이 안내형 체험 보여주기
Please note: You will need an AWS account to complete this course. Your AWS account will be charged as per your usage. Please make sure that you are able to access Sagemaker within your AWS account. If your AWS account is new, you may need to ask AWS support for access to certain resources. You should be familiar with python programming, and AWS before starting this hands on project. We use a Sagemaker P type instance in this project, and if you don't have access to this instance type, please contact AWS support and request access. In this 2-hour long project-based course, you will learn how to train and deploy a Semantic Segmentation model using Amazon Sagemaker. Sagemaker provides a number of machine learning algorithms ready to be used for solving a number of tasks. We will use the semantic segmentation algorithm from Sagemaker to create, train and deploy a model that will be able to segment images of dogs and cats from the popular IIIT-Oxford Pets Dataset into 3 unique pixel values. That is, each pixel of an input image would be classified as either foreground (pet), background (not a pet), or unclassified (transition between foreground and background). Since this is a practical, project-based course, we will not dive in the theory behind deep learning based semantic segmentation, but will focus purely on training and deploying a model with Sagemaker. You will also need to have some experience with Amazon Web Services (AWS).
Python programming, conceptual understanding of deep learning, and previous experience with AWS is required.
Deep Learning
semantic segmentation
Machine Learning
sagemaker
Computer Vision
작업 영역이 있는 분할 화면으로 재생되는 동영상에서 강사는 다음을 단계별로 안내합니다.
Introduction
Download the Data
Visualize the Data
Training Image
Preparing the Data
Uploading the Data to S3
Sagemaker Estimator
Hyperparameters
Data Channels
Model Training
작업 영역은 브라우저에 바로 로드되는 클라우드 데스크톱으로, 다운로드할 필요가 없습니다.
분할 화면 동영상에서 강사가 프로젝트를 단계별로 안내해 줍니다.
MA 제공
2021년 3월 7일Thanks So Much Coursera Learning Platform i Learn lot of Skills from Here, and get start my Business www.facebook.com/MySalesWays
AA 제공
2022년 1월 11일I found the project to be a great step-by-step introduction to using notebooks within sagemaker in order to orchestrate training/deployment jobs!
귀하의 작업 영역에는 노트북이나 데스크톱 컴퓨터에 맞게 용량이 지정된 클라우드 데스크톱이 포함되어 있으므로 모바일 기기에서는 안내 프로젝트를 이용할 수 없습니다.
안내 프로젝트 강사는 해당 주제의 전문가로서, 해당 프로젝트 영역이나 도구, 기술에 대한 경험이 풍부하며 전 세계 수백만 명의 학습자와 지식을 적극적으로 공유합니다.
안내 프로젝트에서 생성된 파일은 모두 다운로드하고 보관할 수 있습니다. 클라우드 데스크톱에 접속한 상태에서 '파일 브라우저'를 사용하여 파일을 다운로드할 수 있습니다.
페이지 상단에서 이 안내 프로젝트에 대한 경험 수준을 누르면 우선적으로 알아야 하는 지식을 확인할 수 있습니다. 안내 프로젝트의 단계마다 강사가 차례대로 안내해 드립니다.
네, 브라우저를 통해 이용할 수 있는 클라우드 데스크톱에서 안내 프로젝트 완료에 필요한 모든 것을 이용할 수 있습니다.
브라우저의 분할 화면 환경에서 바로 작업을 완료하여 학습할 수 있습니다. 화면 왼쪽에 있는 작업 영역에서 작업을 완료할 수 있습니다. 화면 오른쪽에서는 강사의 단계별 프로젝트 안내를 볼 수 있습니다.
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.