About this 전문분야
최근 조회 31,130

학위 취득의 첫걸음을 내디뎌 보세요.

Master in Computer Science 학위에서 강의, 강좌 읽기 자료, 자가 맞춤 과제를 살펴보세요.

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 일정

유연한 마감을 설정하고 유지 관리합니다.

중급 단계

완료하는 데 약 6개월 필요

매주 7시간 권장

영어

자막: 영어, 한국어

귀하가 습득할 기술

Software-Defined NetworkingDistributed ComputingBig DataCloud Computing

학위 취득의 첫걸음을 내디뎌 보세요.

Master in Computer Science 학위에서 강의, 강좌 읽기 자료, 자가 맞춤 과제를 살펴보세요.

100% 온라인 강좌

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 일정

유연한 마감을 설정하고 유지 관리합니다.

중급 단계

완료하는 데 약 6개월 필요

매주 7시간 권장

영어

자막: 영어, 한국어

How the 전문분야 Works

강좌 수강

Coursera 전문 분야는 기술을 완벽하게 습득하는 데 도움이 되는 일련의 강좌입니다. 시작하려면 전문 분야에 직접 등록하거나 강좌를 둘러보고 원하는 강좌를 선택하세요. 하나의 전문 분야에 속하는 강좌에 등록하면 해당 전문 분야 전체에 자동으로 등록됩니다. 단 하나의 강좌만 수료해도 됩니다. — 학습을 일시 중지하거나 언제든 구독을 종료할 수 있습니다. 학습자 대시보드를 방문하여 강좌 등록 상태와 진도를 추적해 보세요.

실습 프로젝트

모든 전문 분야에는 실습 프로젝트가 포함되어 있습니다. 전문 분야를 완료하고 수료증을 받으려면 프로젝트를 성공적으로 마쳐야 합니다. 전문 분야에 별도의 실습 프로젝트 강좌가 포함되어 있는 경우 각 강좌를 완료해야 프로젝트를 시작할 수 있습니다.

수료증 취득

모든 강좌를 마치고 실습 프로젝트를 완료하면 취업할 때나 전문가 네트워크에 진입할 때 제시할 수 있는 수료증을 취득할 수 있습니다.

how it works

이 전문분야에는 6개의 강좌가 있습니다.

강좌1

Cloud Computing Concepts, Part 1

4.5
692개의 평가
170개의 리뷰
Cloud computing systems today, whether open-source or used inside companies, are built using a common set of core techniques, algorithms, and design philosophies – all centered around distributed systems. Learn about such fundamental distributed computing "concepts" for cloud computing. Some of these concepts include: clouds, MapReduce, key-value/NoSQL stores, classical distributed algorithms, widely-used distributed algorithms, scalability, trending areas, and much, much more! Know how these systems work from the inside out. Get your hands dirty using these concepts with provided homework exercises. In the programming assignments, implement some of these concepts in template code (programs) provided in the C++ programming language. Prior experience with C++ is required. The course also features interviews with leading researchers and managers, from both industry and academia....
강좌2

Cloud Computing Concepts: Part 2

4.6
214개의 평가
46개의 리뷰
Cloud computing systems today, whether open-source or used inside companies, are built using a common set of core techniques, algorithms, and design philosophies – all centered around distributed systems. Learn about such fundamental distributed computing "concepts" for cloud computing. Some of these concepts include: clouds, MapReduce, key-value/NoSQL stores, classical distributed algorithms, widely-used distributed algorithms, scalability, trending areas, and much, much more! Know how these systems work from the inside out. Get your hands dirty using these concepts with provided homework exercises. In the programming assignments, implement some of these concepts in template code (programs) provided in the C++ programming language. Prior experience with C++ is required. The course also features interviews with leading researchers and managers, from both industry and academia. This course builds on the material covered in the Cloud Computing Concepts, Part 1 course....
강좌3

Cloud Computing Applications, Part 1: Cloud Systems and Infrastructure

4.1
383개의 평가
93개의 리뷰
Welcome to the Cloud Computing Applications course, the first part of a two-course series designed to give you a comprehensive view on the world of Cloud Computing and Big Data! In this first course we cover a multitude of technologies that comprise the modern concept of cloud computing. Cloud computing is an information technology revolution that has just started to impact many enterprise computing systems in major ways, and it will change the face of computing in the years to come. We start the first week by introducing some major concepts in cloud computing, the economics foundations of it and we introduce the concept of big data. We also cover the concept of software defined architectures, and how virtualization results in cloud infrastructure and how cloud service providers organize their offerings. In week two, we cover virtualization and containers with deeper focus, including lectures on Docker, JVM and Kubernates. We finish up week two by comparing the infrastructure as a service offering by the big three: Amazon, Google and Microsoft. Week three moves to higher level of cloud offering, including platform as a service, mobile backend as a service and even serverless architectures. We also talk about some of the cloud middleware technologies that are fundamental to cloud based applications such as RPC and REST, JSON and load balancing. Week three also covers metal as a service (MaaS), where physical machines are provisioned in a cloud environment. Week four introduces higher level cloud services with special focus on cloud storage services. We introduce Hive, HDFS and Ceph as pure Big Data Storage and file systems, and move on to cloud object storage systems, virtual hard drives and virtual archival storage options. As discussion on Dropbox cloud solution wraps up week 4 and the course....
강좌4

Cloud Computing Applications, Part 2: Big Data and Applications in the Cloud

4.2
186개의 평가
32개의 리뷰
Welcome to the Cloud Computing Applications course, the second part of a two-course series designed to give you a comprehensive view on the world of Cloud Computing and Big Data! In this second course we continue Cloud Computing Applications by exploring how the Cloud opens up data analytics of huge volumes of data that are static or streamed at high velocity and represent an enormous variety of information. Cloud applications and data analytics represent a disruptive change in the ways that society is informed by, and uses information. We start the first week by introducing some major systems for data analysis including Spark and the major frameworks and distributions of analytics applications including Hortonworks, Cloudera, and MapR. By the middle of week one we introduce the HDFS distributed and robust file system that is used in many applications like Hadoop and finish week one by exploring the powerful MapReduce programming model and how distributed operating systems like YARN and Mesos support a flexible and scalable environment for Big Data analytics. In week two, our course introduces large scale data storage and the difficulties and problems of consensus in enormous stores that use quantities of processors, memories and disks. We discuss eventual consistency, ACID, and BASE and the consensus algorithms used in data centers including Paxos and Zookeeper. Our course presents Distributed Key-Value Stores and in memory databases like Redis used in data centers for performance. Next we present NOSQL Databases. We visit HBase, the scalable, low latency database that supports database operations in applications that use Hadoop. Then again we show how Spark SQL can program SQL queries on huge data. We finish up week two with a presentation on Distributed Publish/Subscribe systems using Kafka, a distributed log messaging system that is finding wide use in connecting Big Data and streaming applications together to form complex systems. Week three moves to fast data real-time streaming and introduces Storm technology that is used widely in industries such as Yahoo. We continue with Spark Streaming, Lambda and Kappa architectures, and a presentation of the Streaming Ecosystem. Week four focuses on Graph Processing, Machine Learning, and Deep Learning. We introduce the ideas of graph processing and present Pregel, Giraph, and Spark GraphX. Then we move to machine learning with examples from Mahout and Spark. Kmeans, Naive Bayes, and fpm are given as examples. Spark ML and Mllib continue the theme of programmability and application construction. The last topic we cover in week four introduces Deep Learning technologies including Theano, Tensor Flow, CNTK, MXnet, and Caffe on Spark....
강좌5

Cloud Networking

4.5
187개의 평가
41개의 리뷰
In the cloud networking course, we will see what the network needs to do to enable cloud computing. We will explore current practice by talking to leading industry experts, as well as looking into interesting new research that might shape the cloud network’s future. This course will allow us to explore in-depth the challenges for cloud networking—how do we build a network infrastructure that provides the agility to deploy virtual networks on a shared infrastructure, that enables both efficient transfer of big data and low latency communication, and that enables applications to be federated across countries and continents? Examining how these objectives are met will set the stage for the rest of the course. This course places an emphasis on both operations and design rationale—i.e., how things work and why they were designed this way. We're excited to start the course with you and take a look inside what has become the critical communications infrastructure for many applications today....
강좌6

Cloud Computing Project

4.5
17개의 평가
6개의 리뷰
Note: You should complete all the other courses in this Specialization before beginning this course. This six-week long Project course of the Cloud Computing Specialization will allow you to apply the learned theories and techniques for cloud computing from the previous courses in the Specialization, including Cloud Computing Concepts, Part 1, Cloud Computing Concepts, Part 2, Cloud Computing Applications, Part 1, Cloud Computing Concepts, Part 2, and Cloud Networking....

강사

Avatar

Reza Farivar

Data Engineering Manager at Capital One, Adjunct Research Assistant Professor of Computer Science
Department of Computer Science
Avatar

Ankit Singla

Assistant Professor
Department of Computer Science, ETH Zürich
Avatar

Indranil Gupta

Professor
Department of Computer Science
Avatar

P. Brighten Godfrey

Associate Professor
Department of Computer Science
Avatar

Roy H. Campbell

Professor of Computer Science
Department of Computer Science

다른 사람보다 먼저 시작해 보세요.

이 전문분야은(는) 일리노이대학교 어버너-섐페인캠퍼스의 100% 온라인 Master in Computer Science 중 일부입니다. 지금 바로 공개 강좌 또는 전문 분야를 시작하여 iMBA 교수진으로 구성된 강좌를 시청하고 자기 주도 과제를 완료해 보세요. 강좌를 완료할 때마다 이력서와 LinkedIn에 추가할 수 있는 수료증을 받습니다. 전체 프로그램을 신청하고 수료하면 귀하의 강좌가 학위 취득에 반영됩니다.

일리노이대학교 어버너-섐페인캠퍼스 정보

The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs. ...

자주 묻는 질문

  • 네! 시작하려면 관심 있는 강좌 카드를 클릭하여 등록합니다. 강좌를 등록하고 완료하면 공유할 수 있는 인증서를 얻거나 강좌를 청강하여 강좌 자료를 무료로 볼 수 있습니다. 전문 분야 과정에 있는 강좌에 등록하면, 전체 전문 분야에 등록하게 됩니다. 학습자 대시보드에서 진행 사항을 추적할 수 있습니다.

  • 이 강좌는 100% 온라인으로 진행되므로 강의실에 직접 참석할 필요가 없습니다. 웹 또는 모바일 장치를 통해 언제 어디서든 강의, 읽기 자료, 과제에 접근할 수 있습니다.

  • Time to completion can vary widely based on your schedule. Most learners are able to complete the Specialization in 4-5 months.

  • Each course in the Specialization is offered on a regular schedule with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over.

  • Basic working knowledge of computers and computer systems

    Familiarity with common programming languages (e.g., C, C++, Java)

  • It is recommended that the courses in the Specialization be taken in the order outlined. In the Capstone Project, you will have the opportunity to synthesize your learning in all the courses and apply your combined skills in a final project.

  • MCS courses in Coursera do not carry University of Illinois credit on their own. Each course has an enhanced for-credit component. You can earn academic credit if you combine an MCS Coursera course with the enhanced for-credit component offered on the University of Illinois platform. Some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • There will be hands-on laboratory experiments (Load Balancing and Web Services, MapReduce, Hive, Storm, and Mahout). Case studies will be drawn from Yahoo, Google, Twitter, Facebook, data mining, analytics, and machine learning. We will also explore current practice by talking to leading industry experts, as well as looking into interesting new research that might shape the cloud network’s future.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.