이 전문 분야 정보

최근 조회 145,006
For a lot of higher level courses in Machine Learning and Data Science, you find you need to freshen up on the basics in mathematics - stuff you may have studied before in school or university, but which was taught in another context, or not very intuitively, such that you struggle to relate it to how it’s used in Computer Science. This specialization aims to bridge that gap, getting you up to speed in the underlying mathematics, building an intuitive understanding, and relating it to Machine Learning and Data Science. In the first course on Linear Algebra we look at what linear algebra is and how it relates to data. Then we look through what vectors and matrices are and how to work with them. The second course, Multivariate Calculus, builds on this to look at how to optimize fitting functions to get good fits to data. It starts from introductory calculus and then uses the matrices and vectors from the first course to look at data fitting. The third course, Dimensionality Reduction with Principal Component Analysis, uses the mathematics from the first two courses to compress high-dimensional data. This course is of intermediate difficulty and will require Python and numpy knowledge. At the end of this specialization you will have gained the prerequisite mathematical knowledge to continue your journey and take more advanced courses in machine learning.
학습자 경력 결과
50%
이 특화 과정을(를) 수료한 후 새로운 경력을 시작함
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인 강좌
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 일정
유연한 마감을 설정하고 유지 관리합니다.
초급 단계
완료하는 데 약 4개월 필요
매주 4시간 권장
영어
자막: 영어, 그리스어, 스페인어
학습자 경력 결과
50%
이 특화 과정을(를) 수료한 후 새로운 경력을 시작함
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인 강좌
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 일정
유연한 마감을 설정하고 유지 관리합니다.
초급 단계
완료하는 데 약 4개월 필요
매주 4시간 권장
영어
자막: 영어, 그리스어, 스페인어

이 전문 분야에는 3개의 강좌가 있습니다.

강좌1

강좌 1

Mathematics for Machine Learning: Linear Algebra

4.7
별점
7,449개의 평가
1,483개의 리뷰
강좌2

강좌 2

Mathematics for Machine Learning: Multivariate Calculus

4.7
별점
3,571개의 평가
615개의 리뷰
강좌3

강좌 3

Mathematics for Machine Learning: PCA

4.0
별점
1,915개의 평가
457개의 리뷰

제공자:

임페리얼 칼리지 런던 로고

임페리얼 칼리지 런던

자주 묻는 질문

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • 구독하는 경우, 취소해도 요금이 청구되지 않는 7일간의 무료 평가판을 이용할 수 있습니다. 해당 기간이 지난 후에는 환불이 되지 않지만, 언제든 구독을 취소할 수 있습니다. 전체 환불 정책 보기.

  • 네! 시작하려면 관심 있는 강좌 카드를 클릭하여 등록합니다. 강좌를 등록하고 완료하면 공유할 수 있는 인증서를 얻거나 강좌를 청강하여 강좌 자료를 무료로 볼 수 있습니다. 전문 분야 과정에 있는 강좌에 등록하면, 전체 전문 분야에 등록하게 됩니다. 학습자 대시보드에서 진행 사항을 추적할 수 있습니다.

  • 예, Coursera에서는 수업료를 낼 수 없는 학습자를 위해 재정 지원을 제공합니다. 왼쪽에 있는 등록 버튼 아래 재정 지원 링크를 클릭하면 지원할 수 있습니다. 신청서를 작성하라는 메시지가 표시되며 승인되면 알림을 받습니다. 성취 프로젝트를 포함하여 전문 분야의 각 강좌에서 이 단계를 완료해야 합니다. 자세히 알아보기.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있으며 강좌를 완료하면 인증서가 발급됩니다. 강좌 내용을 읽고 보기만 원한다면 강좌를 무료로 청강할 수 있습니다. 수업료를 지급하기 어려운 경우, 재정 지원을 신청할 수 있습니다.

  • 이 강좌는 100% 온라인으로 진행되므로 강의실에 직접 참석할 필요가 없습니다. 웹 또는 모바일 장치를 통해 언제 어디서든 강의, 읽기 자료, 과제에 접근할 수 있습니다.

  • High school maths knowledge is required. Basic knowledge of Python can come in handy, but it is not necessary for courses 1 and 2. For course 3 (intermediate difficulty) you will need basic Python and numpy knowledge to get through the assignments.

  • We recommend taking the courses in the order in which they are displayed on the main page of the Specialization.

  • This is a non-credit Specialization.

  • At the end of this Specialization you will have gained the prerequisite mathematical knowledge to continue your journey and take more advanced courses in machine learning.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.