이 전문 분야 정보

최근 조회 159,810
Natural Language Processing (NLP) uses algorithms to understand and manipulate human language. This technology is one of the most broadly applied areas of machine learning. As AI continues to expand, so will the demand for professionals skilled at building models that analyze speech and language, uncover contextual patterns, and produce insights from text and audio. By the end of this Specialization, you will be ready to design NLP applications that perform question-answering and sentiment analysis, create tools to translate languages and summarize text, and even build chatbots. These and other NLP applications are going to be at the forefront of the coming transformation to an AI-powered future. This Specialization is designed and taught by two experts in NLP, machine learning, and deep learning. Younes Bensouda Mourri is an Instructor of AI at Stanford University who also helped build the Deep Learning Specialization. Łukasz Kaiser is a Staff Research Scientist at Google Brain and the co-author of Tensorflow, the Tensor2Tensor and Trax libraries, and the Transformer paper.
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인 강좌
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 일정
유연한 마감을 설정하고 유지 관리합니다.
중급 단계
완료하는 데 약 4개월 필요
매주 5시간 권장
영어
자막: 영어
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인 강좌
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 일정
유연한 마감을 설정하고 유지 관리합니다.
중급 단계
완료하는 데 약 4개월 필요
매주 5시간 권장
영어
자막: 영어

이 전문 분야에는 4개의 강좌가 있습니다.

강좌1

강좌 1

Natural Language Processing with Classification and Vector Spaces

4.6
별점
915개의 평가
211개의 리뷰
강좌2

강좌 2

Natural Language Processing with Probabilistic Models

4.8
별점
265개의 평가
43개의 리뷰
강좌3

강좌 3

Natural Language Processing with Sequence Models

4.5
별점
51개의 평가
13개의 리뷰
강좌4

강좌 4

Natural Language Processing with Attention Models

제공자:

deeplearning.ai 로고

deeplearning.ai

자주 묻는 질문

  • 구독하는 경우, 취소해도 요금이 청구되지 않는 7일간의 무료 평가판을 이용할 수 있습니다. 해당 기간이 지난 후에는 환불이 되지 않지만, 언제든 구독을 취소할 수 있습니다. 전체 환불 정책 보기.

  • 네! 시작하려면 관심 있는 강좌 카드를 클릭하여 등록합니다. 강좌를 등록하고 완료하면 공유할 수 있는 인증서를 얻거나 강좌를 청강하여 강좌 자료를 무료로 볼 수 있습니다. 전문 분야 과정에 있는 강좌에 등록하면, 전체 전문 분야에 등록하게 됩니다. 학습자 대시보드에서 진행 사항을 추적할 수 있습니다.

  • 예, Coursera에서는 수업료를 낼 수 없는 학습자를 위해 재정 지원을 제공합니다. 왼쪽에 있는 등록 버튼 아래 재정 지원 링크를 클릭하면 지원할 수 있습니다. 신청서를 작성하라는 메시지가 표시되며 승인되면 알림을 받습니다. 성취 프로젝트를 포함하여 전문 분야의 각 강좌에서 이 단계를 완료해야 합니다. 자세히 알아보기.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있으며 강좌를 완료하면 인증서가 발급됩니다. 강좌 내용을 읽고 보기만 원한다면 강좌를 무료로 청강할 수 있습니다. 수업료를 지급하기 어려운 경우, 재정 지원을 신청할 수 있습니다.

  • 이 강좌는 100% 온라인으로 진행되므로 강의실에 직접 참석할 필요가 없습니다. 웹 또는 모바일 장치를 통해 언제 어디서든 강의, 읽기 자료, 과제에 접근할 수 있습니다.

  • 이 전문 분야는 대학 학점을 제공하지 않지만, 일부 대학에서 선택적으로 전문 분야 인증서를 학점으로 인정할 수도 있습니다. 자세한 내용은 해당 기관에 문의하세요.

  • This Specialization is for students of machine learning or artificial intelligence as well as software engineers looking for a deeper understanding of how NLP models work and how to apply them.

  • Learners should have a working knowledge of machine learning, intermediate Python including experience with a deep learning framework (e.g., TensorFlow, Keras), as well as proficiency in calculus, linear algebra, and statistics. If you would like to brush up on these skills, we recommend the Deep Learning Specialization, offered by deeplearning.ai and taught by Andrew Ng.

  • This is a Specialization made up of 4 Courses. Course 3 is scheduled for the end of July. Course 4 will launch in September.

  • The deeplearning.ai Natural Language Processing Specialization is one-of-a-kind. 

    • It teaches cutting-edge techniques drawn from recent academic papers, some of which were only first published in 2019.
    • It covers practical methods for handling common NLP use cases (autocorrect, autocomplete), as well as advanced deep learning techniques for chatbots and question-answering.  
    • It starts with the foundations and takes you to a stage where you can build state-of-the-art attention models that allow for parallel computing. 
    • You will not only use packages but also learn how to build these models from scratch. We walk you through all the steps, from data processing to the finished products you can use in your own projects.
    • You will complete one project every week to make sure you understand the concepts for a total of 16 programming assignments.
  • We recommend taking the courses in the prescribed order for a logical and thorough learning experience.

  • This Specialization consists of four Courses. At the rate of 5 hours a week, it typically takes 4 weeks to complete each Course.

  • Learn classical machine learning skills and state-of-the-art deep learning techniques and perform a number of functions:

    • Use logistic regression, naïve Bayes, and word vectors to implement sentiment analysis, complete analogies, and translate words, and use locality sensitive hashing for approximate nearest neighbors.

    • Use dynamic programming, hidden Markov models, and word embeddings to autocorrect misspelled words, autocomplete partial sentences, and identify part-of-speech tags for words.

    • Use dense and recurrent neural networks, LSTMs, GRUs, and Siamese networks in TensorFlow and Trax to perform advanced sentiment analysis, text generation, named entity recognition, and to identify duplicate questions. 

    • Use encoder-decoder, causal, and self-attention to perform advanced machine translation of complete sentences, text summarization, question-answering and to build chatbots. Models covered include T5, BERT, transformer, reformer, and more!

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.