Chevron Left
Battery State-of-Charge (SOC) Estimation(으)로 돌아가기

Battery State-of-Charge (SOC) Estimation, 콜로라도 대학교

4.6
10개의 평가
1개의 리뷰

About this Course

In this course, you will learn how to implement different state-of-charge estimation methods and to evaluate their relative merits. By the end of the course, you will be able to: - Implement simple voltage-based and current-based state-of-charge estimators and understand their limitations - Explain the purpose of each step in the sequential-probabilistic-inference solution - Execute provided Octave/MATLAB script for a linear Kalman filter and evaluate results - Execute provided Octave/MATLAB script for state-of-charge estimation using an extended Kalman filter on lab-test data and evaluate results - Execute provided Octave/MATLAB script for state-of-charge estimation using an sigma-point Kalman filter on lab-test data and evaluate results - Implement method to detect and discard faulty voltage-sensor measurements...
필터링 기준:

1개의 리뷰

대학: John Wang

May 18, 2019

Overall, I good introductory course into Kalman Filtering for SOC estimation. However, the final project was a little bit to easy. In addition to tuning the initial covariance states, maybe add a different part 2 (other than tuning initial parameters) for developing to understand the kalman filter algorithm relating to battery estimation.