Chevron Left
Data Science Methodology(으)로 돌아가기

IBM의 Data Science Methodology 학습자 리뷰 및 피드백

4.6
별점
14,834개의 평가
1,721개의 리뷰

강좌 소개

Despite the recent increase in computing power and access to data over the last couple of decades, our ability to use the data within the decision making process is either lost or not maximized at all too often, we don't have a solid understanding of the questions being asked and how to apply the data correctly to the problem at hand. This course has one purpose, and that is to share a methodology that can be used within data science, to ensure that the data used in problem solving is relevant and properly manipulated to address the question at hand. Accordingly, in this course, you will learn: - The major steps involved in tackling a data science problem. - The major steps involved in practicing data science, from forming a concrete business or research problem, to collecting and analyzing data, to building a model, and understanding the feedback after model deployment. - How data scientists think! LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate....

최상위 리뷰

AG

May 14, 2019

This is a proper course which will make you to understand each and every stage of Data science methodology. Lectures are well enough to make you think as a data scientist. Thank you fr this course :)

JM

Feb 27, 2020

Very informative step-by-step guide of how to create a data science project. Course presents concepts in an engaging way and the quizzes and assignments helped in understanding the overall material.

필터링 기준:

Data Science Methodology의 1,706개 리뷰 중 1576~1600

교육 기관: Deepratna A

Jun 22, 2019

Could have made it more interesting

교육 기관: Thomas M

Oct 17, 2019

Not great quality of video content

교육 기관: ABHIJEET B

Jun 03, 2019

CHF case study was the worst part

교육 기관: Ali M R H

Oct 03, 2018

The case study was hard to follow

교육 기관: Ramakrishna B

Jun 10, 2019

More explanation would be great.

교육 기관: Glenda m

Mar 25, 2020

Falta mas ejemplos descriptivos

교육 기관: sairam p

Apr 11, 2019

concentrated largely on theory.

교육 기관: Anup U

Jul 20, 2020

it should be more descriptive

교육 기관: usha y

Sep 18, 2018

very nice course knowledgeble

교육 기관: Igor L

Oct 02, 2019

Too basic and too easy

교육 기관: Ar-Rafi H

May 16, 2020

The journey was well

교육 기관: José M P A

Jan 03, 2019

A little boring...

교육 기관: George Z

Jun 17, 2019

Very boring

교육 기관: Rohit G

Apr 30, 2018

Nice course

교육 기관: Max W

Nov 10, 2018

bit boring

교육 기관: Stefano G

Feb 01, 2020

Concepts are well explained. Case study is instead confusing and requires additional knowledge and experience (i.e.modelling section).

Sometimes topics are repeated in different sections making it difficult to understand if a task should be completed in a phase or in the next one (i.e. training sets are repeated in both data preparation and modelling).

Lab is not so useful, because it consists in executing python code without a complete understanding.

This course is fundamental to understand the methodology for data science, however I had to look at the videos multiple times to get an overview and I still feel I'm not familiar with it.

교육 기관: Allam A

Aug 29, 2019

The CHS case was very hard to follow. I feel that with a simpler case, the course would've been easier to understand. The quizzes weren't really all that helpful either and a lot of the terms weren't well explained. There should've been clear definitions of what the different stages of the methodology were. I had a lot of trouble differentiating between the different stages like data preparation and data understanding for example. Overall, I felt I learned very little. Btw, this is not a beginner course... This is like a beginner course from someone who already knows data science.

교육 기관: Lawrence L

Jul 20, 2019

A good overview of data science methodology, with appropriate emphasis on the fact that it is a continuous process with many repetitions that involves stakeholder feedback, thoughtful planning ahead and constant adjustment.

But, I felt there was too much time and emphasis on the details of the specific examples given, and not enough focus on the actual concepts and methods, which could be better explained and their importance better illustrated. The python lab in particular is a well-made example but not very educational from the student perspective.

교육 기관: Filipe S M G

Aug 19, 2019

Videos are short, but full of complicated terms that are difficult to grasp at once. Too many terminologies not only from the Data Science itself, but also from the chosen example make the concepts even more difficult to remember. On top of that, the slides have many texts that cannot be read, since the narrator talks different sentences than what is written. Since there are no written text about the concepts that we are supposed to remember, I had to go back to the videos many times to find/remember the answers to the questions during the Quizz.

교육 기관: Ivan B

Jun 12, 2019

Not a useful course overall. The basic premise is fine and logical, but this course did not do a good job differentiating between the different steps involved in the Data Science Methodology and the terminology chosen and used was not explained very clearly or consistently.

Very dry and wordy videos. Example cases used were not straightforward and did not help me understand the concepts that were being conveyed. Good concepts to learn, but this course could have done a much better job at explaining them.

교육 기관: Regat W

Jan 23, 2020

Thank you for the labs they were great!

Now about everything else:

1. The quality of videos was awfull: the sound was noticeably lower than in previous courses of the specialization,

2. Slides almost irrelevant to text material read, lots of material in such quickly-paced lectures,

3. Lots of medical and mathematical/statistical terms (and other advanced English vocabulary) make this course hard to comprehend to students who rather not that fluent in English.

교육 기관: Rahul S K

Jan 16, 2020

I don't feel like I am gaining any knowledge with the help of your course I am just completing it but I dont think after I have completed this course I can tell anybody that I have learnt anything I feel like use less. I cant use this technology anywhere. futhermore if someone asks me whats the use of this IBM watson I am blank i can just play with it thats it nothing else is it helping us somewhere no. what you have to say in this ?

교육 기관: Nugroho N C

Jan 16, 2020

Hard to understanding content in this section. Especially where the tutor give an example of case study. If you want to do some revision fro this course. Please explain it in more general because for people who didnt have Stastic or IT , is not easy to understand. And also for final assignemtn. Could you please make some example how to finish it ? because i dont know to serve the answer like what exactly you want

교육 기관: Julie H

Mar 13, 2020

Content was excellent in providing a framework to understand the process. Unfortunately, the tools used were completely inadequate. None of them functioned, course "TA's" frequently said problem was fixed, but it wasn't. Eventually, I just gave up on the ungraded exercises, but that meant I didn't actually learn anything beyond what I could have gotten by reading a book.

교육 기관: Dominik T

May 04, 2020

It was great to learn about the methodology and the process that goes into building a model. However, the video lectures felt like something that was quickly thrown together without any passion; extremely boring with a monotone voice, uninteresting slides, and a core example that was boring and felt uninspired.